Return to search

A combination of platinum anticancer drugs and mangiferin causes increased efficacy in cancer cell lines

This thesis mainly deals with some biochemical aspects regarding the efficacy of novel platinum anticancer compounds alone and in combination with mangiferin, as part of a broader study in which both chemistry and biochemistry are involved. Various novel diamine and N-S donor chelate compounds of platinum II and IV have been developed in which factors such as stereochemistry, ligand exchange rate and biocompatibility were considered as additional parameters. In the first order testing, each of these compounds was tested with reference to their “killing” potential by comparing their rate of killing, over a period of 48 hours with those of cisplatin and oxaliplatin. Numerous novel compounds were tested in this way, using the MTT cell viability assay and the three cancer cell lines MCF7, HT29 and HeLa. Although only a few could be regarded as equal to or even better than cisplatin, CPA7 and oxaliplatin, the testing of these compounds on cancer cells provided useful knowledge for the further development of novel compounds. Three of the better compounds, namely Yol 25, Yol 29.1 and Mar 4.1.4 were selected for further studies, together with oxaliplatin and CPA7 as positive controls, to obtain more detailed knowledge of their anticancer action, both alone and when applied in combination with mangiferin. In addition to the above, resistant cells were produced for each of the three different cell lines tested and all the selected compounds, both in the presence and absence of mangiferin. The effects of these treatments on the activation of NFĸB when applied to normal and resistant cell lines were also investigated. All the compounds induced apoptosis in the cell lines tested as well as alter the DNA cycle at one or more phase. Additionally, combination of these compounds with mangiferin enhanced the above-mentioned effects. Mangiferin decreases the IC50 values of the platinum drugs by up to 3.4 times and, although mangiferin alone did not induce cell cycle arrest, the presence of mangiferin in combination with oxaliplatin and Yol 25 shows an earlier and greatly enhanced delay in the S-phase, while cells treated with CPA7, Yol 29.1 and Mar 4.1.4 in combination with mangiferin showed a later, but greatly enhanced delay in the S-phase. It was also found that mangiferin acts as an NFĸB inhibitor when applied in combination with these drugs, which, in turn, reduces the occurrence of resistance in the cell lines. Resistance to oxaliplatin was counteracted by the combination with mangiferin in HeLa and HT29, but not in MCF7 cells, while resistance to CPA7 was only counteracted in the MCF7 cell line. Yol 25 and Mar 4.1.4 did not seem to induce resistance in HeLa and MCF7 cells, but did in HT29 cells, whereas Yol 29.1 caused resistance in HeLa and HT29 cells, but not in MCF7 cells. Finally, an effort was made to evaluate the different compounds by comparing them with respect to their properties relating to anticancer action with and without the addition of mangiferin.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:10338
Date January 2010
CreatorsDu Plessis-Stoman, Debbie
PublisherNelson Mandela Metropolitan University, Faculty of Science
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Doctoral, PhD
Formatxii, 93 leaves, pdf
RightsNelson Mandela Metropolitan University

Page generated in 0.0019 seconds