The probability of a fire occurring in space vehicles and facilities is amplified by the amounts of electrical equipment used. Additionally, the lack of egress for space personnel and irreplaceable resources used aboard space vehicles and facilities require a rapid response of a suppression system and quick extinguishment. Current experimental means that exist to gather data in space vehicles and facilities are limited by both size of the experiment and cost. Thus, more economical solutions must be considered. The aim of this research was to develop a reliable and inexpensive methodology for the prediction of flame extinction and suppression in any three-dimensional environment. This project was split into two parts. Part one included the identification and validation of a computational model for the prediction of gas dispersion. Part two involved the development of an analytical parameter for predicting flame extinction. For model validation, an experimental apparatus was constructed. The experimental apparatus was one-eighth of the volume of electronics racks found aboard typical space facilities. The experimental apparatus allowed for the addition of parallel plates to increase the complexity of the geometry. Data acquisition consisted of gas concentration measurements through planar laser induced fluorescence (PLIF) of nitrogen dioxide and velocity field measurements through particle image velocimetry (PIV). A theoretical framework for a generalized Damköhler number for the prediction of local flame extinction was also developed. Based on complexities in this parameter, the computational code FLUENT was determined to be the ideal means for predicting this quantity. The concentration and velocity field measurements provided validation data for the modelling analysis. Comparison of the modelling analysis with experimental data demonstrated that the FLUENT code adequately predicted the transport of gas to a remote location. The 5 FLUENT code was also used to predict gas transport at microgravity conditions. The model demonstrated that buoyancy decreases the time to achieve higher gas concentrations between the parallel plates. As an example of the use of this methodology for a combustion scenario, the model was used to predict flame extinction in a blow-off case (i.e., rapid increase in strain rate) and localized flame extinction (i.e., flame shrinking) in a low-strain dilution case with carbon dioxide over time. The model predictions demonstrated the potential of this methodology with a Damköhler number for the prediction of extinction in three-dimensional environments.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:562365 |
Date | January 2009 |
Creators | Sutula, Jason Anthony |
Contributors | Torero, Jose L. |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/2763 |
Page generated in 0.0019 seconds