L'évolution de la transmission des données par fibre optique s'est accélérée ces dernières années. Le besoin de transmettre des débits plus élevés (aujourd'hui supérieurs ou égaux à 40 Gb/s) sur des longueurs de transmission de plus en plus grandes ne cesse de croître. Malheureusement la sensibilité aux défauts de propagation augmente avec le débit, que ce soit pour les effets linéaires dus à la dispersion chromatique (CD) et à la dispersion de mode de polarisation (PMD - polarization- mode dispersion) de la fibre, ou les effets non linéaires essentiellement induits par l'effet Kerr (variation de l'indice de réfraction en fonction de l'intensité lumineuse). Dans ce contexte, ce travail de thèse rapporte l'étude des effets de la CD et de la PMD sur les transmissions hauts débits. En outre, la PMD est identifiée aujourd'hui comme la principale source de limitation de la bande passante et de la capacité de transmission autorisées sur une fibre. Par ailleurs, la biréfringence dans les fibres optiques représente la cause principale de la dispersion de mode de polarisation (PMD).Dans ce travail, nous nous sommes focalisés plus particulièrement sur l'étude des effets de la température sur la PMD dans les fibres monomodes standards (SMF) correspondant à la spécification ITU-G.652 utilisées dans les réseaux de transmission longues distances. En tenant compte de l'ellipticité du cœur de la fibre, la variation de la PMD en fonction de la température est étudiée à travers l'évolution de la biréfringence en fonction du paramètre V de la fibre pour différentes températures. Ce travail de thèse ouvre la voie pour développer une architecture permettant de compenser la PMD par traitement numérique du signal. L'idée sous jacente est de remplacer une technologie coûteuse (composants optiques) par une architecture numérique à faible coût, et plus universelle. Les travaux en cours sur la compensation de la PMD par voie électronique sont encourageants et semblent très prometteurs à court terme / The evolution of optical fibre transmissions accelerated these last years. The need to transmit high bit rates (today equal to or higher than 40 Gb/s) over increasingly large lengths of transmission is constantly growing. Unfortunately, the sensitivity of propagation to defects increases with the bit rate. These effects are related to chromatic dispersion CD, polarization mode dispersion PMD, or to nonlinear effects primarily induced by the effect Kerr (dependence of the index of refraction of fibre of the light intensity). In this context, this work focuses on the study of the effects of CD and the PMD on the optical transmissions. Moreover, the PMD is identified today as the principal source of limitation in high bit rate transmissions. In addition to that, birefringence in optical fibres represents the principal cause of PMD. In this work, we particularly focused on the study of the effects of the temperature on the PMD in monomode standards fibres (SMF) corresponding to specification ITU-G.652 used in the optical networks. By taking into account of the ellipticity of the fibre, the variation of the PMD according to the temperature is studied through the evolution of birefringence according to the parameter V of fibre for various temperatures. This work of thesis opens the way to develop an architecture making it possible to compensate for the PMD by digital signal processing. The main idea is to replace an expensive technology (optical components) by a numerical architecture at low cost, and more universal. The works in progress on the compensation of the PMD by electronic way are encouraging and seem very promising at short-term
Identifer | oai:union.ndltd.org:theses.fr/2007METZ024S |
Date | 25 October 2007 |
Creators | Boudrioua, Nassima |
Contributors | Metz, Dandache, Abbas, Boudrioua, Azzedine |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds