Supplying haptic or force feedback to operators using hydraulic machinery such as excavators has the potential to increase operator capabilities. Haptic, robotic, human-machine interfaces enable several enhancing features including coordinated motion control and programmable haptic feedback. Coordinated or resolved motion control supplies a more intuitive means of specifying the equipment's motion. Haptic feedback is used to relay meaningful information back to the user in the form of force signals about digging force acting on the bucket, programmable virtual constraints and system limitations imposed by the mechanism, maximum pressure or maximum flow. In order to make this technology economically viable, the benefits must offset the additional cost associated with implementation. One way to minimize this cost is to not use high-end hydraulic components. For smaller backhoes and mini-excavators this means that the hydraulic systems are comprised of a constant displacement pump and proportional direction control valves. Hydraulic and haptic control techniques suitable for backhoes/excavators are developed and tested on a small backhoe test-bed. A virtual backhoe simulator is created for controller design and human evaluation. Not only is the virtual simulator modeled after the test-bed, but the control algorithm used in the simulator is the same as the actual backhoe test-bed. Data from human subject tests are presented that evaluate the control strategies on both the real and virtual backhoe. The end goal of this project is to incorporate coordinated haptic control algorithms that work with low-cost systems and maximize the enhancement of operator capabilities.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/19876 |
Date | 30 July 2007 |
Creators | Kontz, Matthew Edward |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.002 seconds