Return to search

3D Shape Detection for Augmented Reality / 3D form-detektion för förstärkt verklighet

In previous work, 2D object recognition has shown exceptional results. However, it is not possible to sense the environment spatial information, where the objects are and what they are. Having this knowledge could imply improvements in several fields like Augmented Reality by allowing virtual characters to interact more realistically with the environment and Autonomous cars by being able to make better decisions knowing where the objects are in a 3D space. The proposed work shows that it is possible to predict 3D bounding boxes with semantic labels for 3D object detection and a set of primitives for 3D shape recognition from multiple objects in a indoors scene using an algorithm that receives as input an RGB image and its 3D information. It uses Deep Neural Networks with novel architectures for point cloud feature extraction. It uses a unique feature vector capable of representing the latent space of the object that models its shape, position, size and orientation for multi-task prediction trained end-to-end with unbalanced datasets. It runs in real time (5 frames per second) in a live video feed. The method is evaluated in the NYU Depth Dataset V2 using Average Precision for object detection and 3D Intersection over Union and surface-to-surface distance for 3D shape. The results confirm that it is possible to use a shared feature vector for more than one prediction task and it generalizes for unseen objects during the training process achieving state-of-the-art results for 3D object detection and 3D shape prediction for the NYU Depth Dataset V2. Qualitative results are shown in real particular captured data showing that there could be navigation in a real-world indoor environment and that there could be collisions between the animations and the detected objects improving the interaction character-environment in Augmented Reality applications. / 2D-objektigenkänning har i tidigare arbeten uppvisat exceptionella resultat. Dessa modeller gör det dock inte möjligt att erhålla rumsinformation, så som föremåls position och information om vad föremålen är. Sådan kunskap kan leda till förbättringar inom flera områden så som förstärkt verklighet, så att virtuella karaktärer mer realistiskt kan interagera med miljön, samt för självstyrande bilar, så att de kan fatta bättre beslut och veta var objekt är i ett 3D-utrymme. Detta arbete visar att det är möjligt att modellera täckande rätblock med semantiska etiketter för 3D-objektdetektering, samt underliggande komponenter för 3D-formigenkänning, från flera objekt i en inomhusmiljö med en algoritm som verkar på en RGB-bild och dess 3D-information. Modellen konstrueras med djupa neurala nätverk med nya arkitekturer för Point Cloud-representationsextraktion. Den använder en unik representationsvektor som kan representera det latenta utrymmet i objektet som modellerar dess form, position, storlek och orientering för komplett träning med flera uppgifter, med obalanserade dataset. Den körs i realtid (5 bilder per sekund) i realtidsvideo. Metoden utvärderas med NYU Depth Dataset V2 med Genomsnittlig Precision för objektdetektering, 3D-Skärning över Union, samt avstånd mellan ytorna för 3D-form. Resultaten bekräftar att det är möjligt att använda en delad representationsvektor för mer än en prediktionsuppgift, och generaliserar för föremål som inte observerats under träningsprocessen. Den uppnår toppresultat för 3D-objektdetektering samt 3D-form-prediktion för NYU Depth Dataset V2. Kvalitativa resultat baserade på särskilt anskaffade data visar potential inom navigering i en verklig inomhusmiljö, samt kollision mellan animationer och detekterade objekt, vilka kan förbättra interaktonen mellan karaktär och miljö inom förstärkt verklighet-applikationer.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-231727
Date January 2018
CreatorsAnadon Leon, Hector
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2018:341

Page generated in 0.0018 seconds