Return to search

Designing and combining mid-air interaction techniques in large display environments

Large display environments (LDEs) are interactive physical workspaces featuring one or more static large displays as well as rich interaction capabilities, and are meant to visualize and manipulate very large datasets. Research about mid-air interactions in such environments has emerged over the past decade, and a number of interaction techniques are now available for most elementary tasks such as pointing, navigating and command selection. However these techniques are often designed and evaluated separately on specific platforms and for specific use-cases or operationalizations, which makes it hard to choose, compare and combine them.In this dissertation I propose a framework and a set of guidelines for analyzing and combining the input and output channels available in LDEs. I analyze the characteristics of LDEs in terms of (1) visual output and how it affects usability and collaboration and (2) input channels and how to combine them in rich sets of mid-air interaction techniques. These analyses lead to four design requirements intended to ensure that a set of interaction techniques can be used (i) at a distance, (ii) together with other interaction techniques and (iii) when collaborating with other users. In accordance with these requirements, I designed and evaluated a set of mid-air interaction techniques for panning and zooming, for invoking commands while pointing and for performing difficult pointing tasks with limited input requirements. For the latter I also developed two methods, one for calibrating high-precision techniques with two levels of precision and one for tuning velocity-based transfer functions. Finally, I introduce two higher-level design considerations for combining interaction techniques in input-constrained environments. Designers should take into account (1) the trade-off between minimizing limb usage and performing actions in parallel that affects overall performance, and (2) the decision and adaptation costs incurred by changing the resolution function of a pointing technique during a pointing task.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00772458
Date05 December 2012
CreatorsNancel, Mathieu
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0023 seconds