abstract: The ease of programmability in Software-Defined Networking (SDN) makes it a great platform for implementation of various initiatives that involve application deployment, dynamic topology changes, and decentralized network management in a multi-tenant data center environment. However, implementing security solutions in such an environment is fraught with policy conflicts and consistency issues with the hardness of this problem being affected by the distribution scheme for the SDN controllers.
In this dissertation, a formalism for flow rule conflicts in SDN environments is introduced. This formalism is realized in Brew, a security policy analysis framework implemented on an OpenDaylight SDN controller. Brew has comprehensive conflict detection and resolution modules to ensure that no two flow rules in a distributed SDN-based cloud environment have conflicts at any layer; thereby assuring consistent conflict-free security policy implementation and preventing information leakage. Techniques for global prioritization of flow rules in a decentralized environment are presented, using which all SDN flow rule conflicts are recognized and classified. Strategies for unassisted resolution of these conflicts are also detailed. Alternately, if administrator input is desired to resolve conflicts, a novel visualization scheme is implemented to help the administrators view the conflicts in an aesthetic manner. The correctness, feasibility and scalability of the Brew proof-of-concept prototype is demonstrated. Flow rule conflict avoidance using a buddy address space management technique is studied as an alternate to conflict detection and resolution in highly dynamic cloud systems attempting to implement an SDN-based Moving Target Defense (MTD) countermeasures. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2017
Identifer | oai:union.ndltd.org:asu.edu/item:44988 |
Date | January 2017 |
Contributors | Pisharody, Sandeep (Author), Huang, Dijiang (Advisor), Ahn, Gail-Joon (Committee member), Syrotiuk, Violet (Committee member), Doupe, Adam (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Doctoral Dissertation |
Format | 150 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved |
Page generated in 0.0025 seconds