Return to search

Assessment of the effects of gold-mine effluent on the natural aquatic environment

D.Phil. (Zoology) / South Africa is a major gold-producing country with the 43 larger mines processing approximately 120 x 106 ton of milled and processed ore and about 30 x I06 ton of mined waste rock. Pollution of both surface and ground water, which can be attributed to the influences of gold-mining, are well known. Acid mine drainage, characterized by a low pH and high concentrations of dissolved metals, and seepage, from active and disused mine-tailings, are two of the main environmental problems associated with gold mining operations in South Africa. A growing concern for the environment and a stricter approach to water pollution by government agencies have made it necessary to investigate the type of effects which the gold mining industry is responsible for, and to develop action to reduce these impacts. The present study focused on procedures to access the effect of gold-mining effluent on the natural surface environment. The study is divided into three separate identities. The mine represented as Ccse study Mine One is considered to be a major contributor of salt loads to the natural stream on the property of the mine. This stream confluences with the Klip River outside the mined area. This mine has only one discharge point of underground mine service water, and is considered to be the main point source of pollution for the mine. As the mine makes use of an open water circuit, the quality and quantity of effluent have a direct effect on the downstream users. It appears that one of the main water quality problems of this open water circuit is the creation of surface water with a very low pH. Part of the problem is the geology of the area which consists of shales, which has a natural low buffering capacity. Because of the low pH the wetlands are not very effective. Metal concentration changes are possibly the direct result of the low pH of the both the water column and sediment. Improving the pH of the surface water can leads to reduced metal concentrations in the water, with possible increased concentrations in the sediment and wetland vegetation. Case Study Mine Two was conducted at a gold mine in the Far West Rand Mine region. The mine can be classified as having a closed water circuit, in that only excess water is discharged. The volume of water discharged is dependent on a number of factors, such as rainfall, wash-down service water and changing demands in sewage treatment systems. The advantage in this type of circuit is that water which has accidentally been spilled can be retained in one of the boundary dams, without the possibility of endangering the downstream users. From the assessment it appears that although the mining activities have influenced the water within the mining area this impact is only confirmed to certain areas. Biotic environmental conditions at certain sites resemble the conditions of the two control sites while other, notably those in contact with processing plants (e.g. metallurgical plant), are far more deteriorated. pH does not seem to be a problem at this specific mine. The main reasons are that the underlying geology of the mine is dolomitic in nature, while the sulphate concentration in the ore appears to be lower than those' found at the Witwatersrand mines. Case study Mine Three is situated in the Klerksdorp gold-mining region. The mine has a complex water circuit as a percentage of the service water is being reused or/and discharged via effluent streams into the Vaal River. Metal concentrations in the sediment core samples indicate a large variability between seasons, sites and depth. Sites in close proximity of slimes dams have high iron and manganese concentrations, whilst those in contact with effluent water from metallurgical plants have relatively high nickel, copper and in concentrations. This can be related to the type of processing material used in the gold-mining process.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:11155
Date21 May 2014
CreatorsVenter, Andries J.A.
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis
RightsUniversity of Johannesburg

Page generated in 0.0022 seconds