There are three novel 2-trifluoromethyl-activated bisfluoro monomers have been successfully synthesized in this study, and the nomenclatures are shown as follows:
4,4¡¦¡¦¡¦¡¦-Difluore-3,3¡¦¡¦¡¦¡¦-bis(trifluoromethyl)-2¡¦¡¦,3¡¦¡¦,5¡¦¡¦,6¡¦¡¦-triphenyl(M4),
4,4¡¦¡¦¡¦¡¦-Difluore-3,3¡¦¡¦¡¦¡¦-bis(trifluoromethyl)-2¡¦¡¦,3¡¦¡¦,5¡¦¡¦-triphenyl(M3),
4,4¡¦¡¦¡¦¡¦-Difluore-3,3¡¦¡¦¡¦¡¦-bis(trifluoromethyl)-2¡¦¡¦,3¡¦¡¦-triphenyl(M2). Through polymerization with 1,1-dihydroxydiphenyl cyclododecane the monomers M2, M3 and M4 were accordingly converted into poly(arylene ether)s P2-1,1C, P3-1,1C and P4-1,1C, respectively. These polymers exhibit weight-average molecular weight up to 2.25¡Ñ105g/mol. The molecular weight were investigated and confirmed by MASS and GPC. The molecular structures were investigated and confirmed by NMR and FTIR.
The UV-VIS absorption and photoluminescence spectra measurement of all the monomers and polymers in dilute solutions and in solid state were conducted. The results show that all monomers and polymers in dilute solutions have no absorption in the vision light region of spectrum. The absorption spectra of polymer thin films showed high optical transparency up to 90%. The photoluminescence spectra of all monomers and polymers in dilute solutions and thin film emits light with high intensity and wavelength in region of 350~380nm.
Thermal analysis studies were conducted with TGA, DSC, TMA and crystal property study was performed by XRD. The results show that these polymers did not show melting but showed ultrahigh Tg values ranging from 270~330¢XC in DSC and TMA measurements, so it indicated that three polymers were not crystalline materials. Outstanding thermal stability is over then 440~ 460¢XC for 5% weight loss in TGA under nitrogen atmosphere. So it could make manufacture in higher temperature and have higher thermal stability.
With optical properties of polymer thin films, we utilized Ellipsometer to measure refractive index and the results showed no birefringence for these polymers. The polymer thin films show low polarity and high hydrophobicity could be attested by the measured results of contact angle and surface energy.
The HOMO and LUMO energy level of monomers are both measured by Cyclic Voltammetry and theoretical calculation.
The absorption spectra of polymer thin films showed no absorption in the visible light region of the spectrum i.e., having a high optical transparency. All above stated material properties are good for doing as a plastic substrate of devices or panel display.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0727107-121705 |
Date | 27 July 2007 |
Creators | Tsao, Tzu-i |
Contributors | Yu-Kai Han, Mei-Ying Chang, Wen-Yao Huang, Hsin-Lung Chen |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0727107-121705 |
Rights | not_available, Copyright information available at source archive |
Page generated in 0.0021 seconds