Total hip joint prostheses made of CoCrMo heads versus ultra high molecular weight polyethylene (UHMWPE) cups have a limited lifetime, mainly due to the wear of the UHMWPE cups as a result of high friction between the articulating surfaces leading to osteolysis and implant loosening with revision surgery becoming inevitable in more active patients. Tribology plays an important role in developing the design, minimizing wear and reducing friction of hip joint prostheses in order to improve their long-term performance, with good lubricating properties. Metal-on-metal hip resurfacing prostheses have shown significantly lower wear rates compared with conventional metal-on-polyethylene implants and thus osteolysis is potentially reduced leading to increased lifetime of the prosthesis. Nevertheless, excessive wear of metal-on-metal joints leads to metal ion release, causing pseudo-tumours and osteolysis. An alternative approach to such bearings is the use of newly developed carbon fiber-reinforced poly-ether-ether-ketone (CFR PEEK) acetabular cups articulating against ceramic femoral heads due to their better wear resistance compared to UHMWPE. In this study, therefore, friction and lubrication properties of large diameter, as cast, Co-Cr-Mo metal-on-metal hip resurfacing implants with various diameters and clearances have been investigated and compared to those of the newly developed zirconia toughened alumina (ZTA) ceramic femoral heads articulating against carbon fiber reinforced poly-ether-ether-ketone (CFR PEEK) acetabular cups with different diameters and clearances. Friction hip simulator was used to measure frictional torque and then friction factors were calculated along with Sommerfeld numbers leading to Stribeck analysis and hence the lubricating mode was also investigated. This involved using lubricants based on pure bovine serum (BS) and diluted bovine serum (25 vol. %BS+75 vol. %distilled water) with and without carboxymethyl cellulose (CMC) (as gelling agent). Standard Rheometer was used to measure lubricant viscosity ranged from 0.0014 to 0.236 Pas at a shear rate of 3000 . Pure bovine serum, diluted bovine serum without CMC and with CMC (25BS+75DW+0.5gCMC and +1gCMC) showed pseudoplastic flow behaviour up to shear rate of ~139 s⁻¹ above which a Newtonian flow with significant increase in shear stress was observed. The viscosity flow curves for the 25BS+75DW+2gCMC, +3.5gCMC and +5gCMC showed only shear thinning up to a shear rate of 3000 . The shear rate application modified the flow behaviour of bovine serum from a pseudoplastic to a Newtonian flow depending on its purity and CMC content. This will cause a different frictional behaviour depending on joint diameter and clearance, as seen in this work. The experimental data were compared with theoretical iv predictions of the lubricating regimes by calculating theoretical film thickness and lambda ratio. The metal-on-metal Biomet ReCaps showed similar trends of Stribeck curves, i.e. friction factors decreased from ~0.12 to ~0.05 as Sommerfeld numbers increased in the range of viscosities ~0.001-0.04Pas indicating mixed lubrication regimes above which the friction factor increased to ~0.13 at a viscosity of 0.236Pas. The Stribeck analyses suggested mixed lubrication as the dominant mode with the lowest friction factor in the range ~0.09 - ~0.05 at the physiological viscosities of ~0.01 to ~0.04 Pas and that such joints can be used for more active patients as compared to the conventional total hip replacement joints with 28mm diameter. The Stribeck curves for all ZTA ceramic-on-CFR PEEK components illustrated a similar trend with BS fluids showing higher friction factors (in the range 0.22-0.13) than the diluted BS+CMC fluids (in the range 0.24-0.05). The friction tests revealed boundary-mixed lubrication regimes for the ZTA ceramic-on-CFR-PEEK joints. The results, so far, are promising and suggest clearly that the newly developed ZTA ceramic femoral heads articulating against CFR PEEK cups have similar friction and lubrication behaviour at optimum clearances to those of currently used metal-onmetal hip resurfacing implants at the range of viscosities 0.00612 to 0.155Pas. These results clearly suggest that the ZTA ceramic-on-CFR-PEEK joints showed low friction at the physiological viscosities of ~0.01Pas in the range ~0.1-0.05, suggesting that these novel joints may be used as an alternative material choice for the reduction of osteolysis. The result of this investigation has suggested that the optimum clearance for the 52mm diameter MOM Biomet ReCaps could be ~170μm. However, 48 and 54mm joints showed lower friction due to clearances to be >200μm. For the 52mm ZTA ceramic-on-CFR-PEEK joints the optimum clearance seems to be ≥ 630μm radial clearance. These results suggested that increased clearance bearings have the potential to generate low friction and hence no risk of micro- or even macro-motion for the ceramic-on-CFR-PEEK joints. This study found no correlation between theoretical predictions and experimental data for all metal-onmetal and ZTA ceramic-on-CFR PEEK bearings at the physiological viscosity (0.0127Pas). However, at lubricant viscosity of 0.00157Pas, the theoretical prediction of lubrication regime correlated well with the experimental data, both illustrating boundary lubrication. As expected, a decrease in viscosity resulted decrease in the film thickness.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:582964 |
Date | January 2012 |
Creators | Ehmaida, Mutyaa M. |
Contributors | Youseffi, Mansour |
Publisher | University of Bradford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/10454/5665 |
Page generated in 0.0029 seconds