Newcastle disease virus (NDV) belongs to the Paramyxoviridae, a family of enveloped RNA viruses that includes many important human and animal pathogens. Although many aspects of the paramyxovirus life cycle are known in detail, our understanding of the mechanisms regulating paramyxovirus assembly and release are poorly understood. For many enveloped RNA viruses, it has recently become apparent that both viral and host cellular determinants coordinate the proper and efficient assembly of infectious progeny virions.
Utilizing NDV as a model system to explore viral and cellular determinants of paramyxovirus assembly, we have shown that host cell membrane lipid raft domains serve as platforms of NDV assembly and release. This conclusion was supported by several key experimental results, including the exclusive incorporation of host cell membrane raftassociated molecules into virions, the association of structural components of the NDV particle with membrane lipid raft domains in infected cells and the strong correlation between the kinetics of viral protein dissociation from membrane lipid raft domains and incorporation into virions. Moreover, perturbation of infected cell membrane raft domains during virus assembly resulted in the disordered assembly of abnormal virions with reduced infectivity. These results further established membrane raft domains as sites of virus assembly and showed the integrity of these domains to be critical for the proper assembly of infectious virions.
Although specific viral protein-protein interactions are thought to occur during paramyxovirus assembly, our understanding of how these interactions are coordinated is incomplete. While exploring the mechanisms underlying the disordered assembly of non-infectious virions in membrane raft-perturbed cells, we determined that the integrity of membrane raft domains was critical in the formation and virion incorporation of a complex consisting of the NDV attachment (HN) and fusion (F) proteins. The reduced virus-to-cell membrane fusion capacity of particles released from membrane raft-perturbed cells was attributed to an absence of the HN – F glycoprotein-containing complex within the virion envelope. This result also correlated with a reduction of these glycoprotein complexes in membrane lipid raft fractions of membrane raft-perturbed cells. Specifically, it was determined that the formation of newly synthesized HN and F polypeptides into the glycoprotein complex destined for virion incorporation was dependent on membrane lipid raft integrity.
Finally, a novel virion complex between the ribonucleoprotein (RNP) structure and the HN attachment protein was identified and characterized. Unlike the glycoprotein complex, the detection of the RNP – HN protein-containing complex was not affected by membrane raft perturbation during virus assembly in the cell. The biological importance of this novel complex for the proper assembly of an infectious progeny virion is currently under investigation.
The results presented in this thesis outline the role of host cell membrane lipid raft domains in the assembly and release processes of a model paramyxovirus. Furthermore, the present work extends our understanding of how these particular host cell domains mechanistically facilitate the ordered assembly and release of an enveloped RNA virus.
Identifer | oai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-1360 |
Date | 01 April 2008 |
Creators | Laliberte, Jason P. |
Publisher | eScholarship@UMassChan |
Source Sets | University of Massachusetts Medical School |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Morningside Graduate School of Biomedical Sciences Dissertations and Theses |
Rights | Copyright is held by the author, with all rights reserved., select |
Page generated in 0.0025 seconds