Return to search

Responsive polymers for optical sensing applications

LCST-type synthetic thermoresponsive polymers can reversibly respond to certain stimuli in aqueous media with a massive change of their physical state. When fluorophores, that are sensitive to such changes, are incorporated into the polymeric structure, the response can be translated into a fluorescence signal. Based on this idea, this thesis presents sensing schemes which transduce the stimuli-induced variations in the solubility of polymer chains with covalently-bound fluorophores into a well-detectable fluorescence output. Benefiting from the principles of different photophysical phenomena, i.e. of fluorescence resonance energy transfer and solvatochromism, such fluorescent copolymers enabled monitoring of stimuli such as the solution temperature and ionic strength, but also of association/disassociation mechanisms with other macromolecules or of biochemical binding events through remarkable changes in their fluorescence properties. For instance, an aqueous ratiometric dual sensor for temperature and salts was developed, relying on the delicate supramolecular assembly of a thermoresponsive copolymer with a thiophene-based conjugated polyelectrolyte. Alternatively, by taking advantage of the sensitivity of solvatochromic fluorophores, an increase in solution temperature or the presence of analytes was signaled as an enhancement of the fluorescence intensity. A simultaneous use of the sensitivity of chains towards the temperature and a specific antibody allowed monitoring of more complex phenomena such as competitive binding of analytes.
The use of different thermoresponsive polymers, namely poly(N-isopropylacrylamide) and poly(meth)acrylates bearing oligo(ethylene glycol) side chains, revealed that the responsive polymers differed widely in their ability to perform a particular sensing function. In order to address questions regarding the impact of the chemical structure of the host polymer on the sensing performance, the macromolecular assembly behavior below and above the phase transition temperature was evaluated by a combination of fluorescence and light scattering methods. It was found that although the temperature-triggered changes in the macroscopic absorption characteristics were similar for these polymers, properties such as the degree of hydration or the extent of interchain aggregations differed substantially. Therefore, in addition to the demonstration of strategies for fluorescence-based sensing with thermoresponsive polymers, this work highlights the role of the chemical structure of the two popular thermoresponsive polymers on the fluorescence response. The results are fundamentally important for the rational choice of polymeric materials for a specific sensing strategy. / Als Reaktion auf bestimmte äußere Stimuli ändern bestimmte wasserlösliche Polymere reversibel ihren physikalischen Zustand. Dieser Vorgang kann mithilfe von Fluorophoren, die in die Polymerstrukturen eingebaut werden und deren Fluoreszenzeigenschaften vom Polymer¬zustand abhängen, detektiert werden. Diese Idee ist der Ausgangspunkt der vorliegenden Arbeit, die sich damit beschäftigt, wie äußerlich induzierte Änderungen der Löslichkeit solcher Polymere mit kovalent gebundenen Fluorophoren in Wasser in ein deutlich messbares Fluoreszenzsignal übersetzt werden können. Dazu werden photophysikalische Phänomene wie Fluoreszenz-Resonanz¬energie¬transfer und Solvatochromie ausgenutzt. In Kombination mit einem responsiven Polymergerüst wird es möglich, verschiedene Stimuli wie Lösungs¬temperatur oder Ionenstärke, oder auch Assoziation-Dissoziation Reaktionen mit anderen Makromolekülen oder biochemische Bindungs¬reaktionen über die Änderung von Fluorezenz¬farbe bzw. –Intensität autonom mit bloßem Auge zu detektieren. Unter anderem wurde ein wässriger ratiometrischer Temperatur- und Salzsensor entwickelt, der auf der komplexen supramolekularen Struktur eines thermoresponsiven Copolymers und eines thiophenbasierten konjugierten Polyelektrolyts beruht. Die Anbindung solvato¬chromer Fluorophore erlaubte den empfindlichen Nachweis einer Temperatur¬änderung oder des Vorhandenseins von Analyten. Komplexere Phänomene wie das kompetitive Anbinden von Analyten ließen sich hochempfindlich steuern und auslesen, indem gleichzeitig die Sensitivität dieser Polymeren gegenüber der Temperatur und spezifischen Antikörpern ausgenutzt wurde.
Überraschenderweise wiesen die hier untersuchten thermoresponsiven Polymere wie poly-N-isopropylacrylamid (pNIPAm) oder poly-Oligoethylenglykolmethacrylate (pOEGMA) große Unterschiede bzgl. ihrer responsiven optischen Eigenschaften auf. Dies erforderte eine ausführliche Charakterisierung des Fluoreszenz- und Aggregationsverhaltens, unter- und oberhalb des Phasenübergangs, im Bezug auf die chemische Struktur. Ein Ergebnis war, dass alle drei Polymertypen sehr ähnliche temperaturabhängige makroskopische Absorptionseigenschaften aufweisen, während sich die Eigenschaften auf molekularer Ebene, wie der Hydratisierungsgrad oder die intermolekulare Polymerkettenaggregation, bei diesen Polymeren sehr unterschiedlich. Diese Arbeit zeigt damit anhand zweier sehr etablierter thermoresponsiver Polymere, nämlich pNIPAm und pOEGMA, das die chemische Struktur entscheidend für den Einsatz dieser Polymere in fluoreszenzbasierten Sensoren ist. Diese Ergebnisse haben große Bedeutung für die gezielte Entwicklung von Polymermaterialien für fluoreszenzbasierte Assays.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:7080
Date January 2013
CreatorsInal, Sahika
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Physik und Astronomie
Source SetsPotsdam University
LanguageEnglish
Detected LanguageEnglish
TypeText.Thesis.Doctoral
Formatapplication/pdf
Rightshttp://creativecommons.org/licenses/by/4.0/

Page generated in 0.0122 seconds