Return to search

Application and Development of Mechanoresponsive Polymer Structures

Mechanoresponsive Systeme antworten auf mechanische Reize mit einer Eigenschaftsänderung. Diese Dissertation umfasst die Arbeiten mit zwei mechanoresponsiven Systemen, die optisch auf mechanische Reize antworten. Sie basieren auf polymeren Strukturen, einer Polymerbürste und einem Hydrogelnetzwerk. Ihr optischer Antwortmechanismus ermöglicht die Beobachtung wirkender Kräfte als ein Ansatz zur in situ-Kraftmessung.
Im ersten Teil wird ein existierendes, mechanoresponsives System zur Anwendung gebracht, das auf einer mit Fluoreszenzfarbstoff markierten Polyelektrolytbürste basiert. Die Ladungen des Polyelektrolyts können die Fluoreszenz des Farbstoffs unterdrücken, sodass lokale Kompression und Zugspannung über die Fluoreszenzintensität unterschieden werden können. Die mechanoresponsive Polymerbürste wurde als mechanosensitive Oberflächenbeschichtung angewandt, um Unterschiede in der Kontaktspannungsverteilung von Gecko-inspirierten adhäsiven Mikrostempelstrukturen aufzuklären. Die erarbeiteten Ergebnisse und daraus abgeleiteten Ablösemechanismen der Mikrostempeltypen deckten sich qualitativ mit Vorhersagen aus theoretischen Ansätzen.
Aufgrund geometrischer Einschränkungen einer planaren Oberflächenbeschichtung zielt der zweite Teil darauf ab, dieses mechanoresponsive Prinzip in ein dreidimensionales Netzwerk zu überführen und ein mechanoresponsives Hydrogelnetzwerk als Plattform zur Kraftmessung zu entwickeln. Konzeptionell besitzt ein homogenes Netzwerk vorhersagbare mechanische Eigenschaften, sodass lokale optische Antworten auf mechanische Kräfte ermöglichen könnten, die wirkenden Kräfte zu lokalisieren und quantifizieren. Basierend auf einer Gestaltung nach der Flory-Rehner-Theorie wurden Präkursoren mit vordefinierter Größe und Architektur für die Hydrogelherstellung eingesetzt, um auf ein homogenes Netzwerk abzuzielen. Zu diesem Zweck wurde das Mischungsvolumen durch Tropfenmikrofluidik reduziert.
Für den optischen Antwortmechanismus wurden die Hydrogelnetzwerk-Präkursoren mit zwei verschiedenen Fluorophoren markiert, die sich durch abstandsabhängige Emission über Förster-Resonanzenergietransfer auszeichnen. Die Funktionalität des optischen Antwortmechanismus wurde auf globaler Ebene durch Kollabieren und kontrolliertes Quellen des Netzwerks, dann auf lokalisierter Ebene durch definierte mechanische Belastung mit Rasterkraftmikroskopie gezeigt. Durch ihre Anpassbarkeit könnte die Hydrogelplattform zukünftig verschiedenste Anwendungen im Bereich intrisischer Kraftmessung weicher Materie bedienen. / Mechanoresponsive systems respond to mechanical triggers by changes in a certain property. This thesis covers the work conducted with two mechanoresponsive systems that respond optically to mechanical triggers. These two systems are based on polymer structures, a polymer brush and a hydrogel network. Thus, the optical response mechanism allows observing acting forces as an approach to force sensing in situ.
In the first part, an existing mechanoresponsive system based on a polyelectrolyte brush labeled with a fluorescent dye is engaged in application. The charges of the polyelectrolyte are able to quench the fluorescence of the dye so that local compression or tension can be distinguished from the local fluorescence intensity. The mechanoresponsive polymer brush was applied as mechanosensitive surface coating to elucidate differences in the contact stress distributions of gecko-inspired adhesive micropillar structures. The determined results and the derived detachment mechanisms of the micropillar types were in qualitative accordance with predictions from theoretical approaches.
Overcoming the geometrical limitations of a planar surface coating, the second part aims at translating the mechanoresponse principle to a three-dimensional network and developing a mechanoresponsive hydrogel as a platform for force sensing. Conceptually, a homogeneous network allows to predict mechanical properties so that localized optical mechanoresponses could enable locating and quantifying acting forces. Based on network design principles from the Flory-Rehner theory, precursors with predefined size and architecture were utilized in hydrogel preparation, aiming for a homogeneous network. Further in this regard, the mixing volume was reduced by employing droplet microfluidics.
As optical response mechanism, the hydrogel network precursors were labeled with two kinds of fluorophore, featuring distance-dependent emission from Förster Resonance Energy Transfer. The functionality of the optical response mechanism was demonstrated on global level by collapsing and controlled swelling of the network, and on a localized level by defined mechanical stress, applied with Atomic Force Microscopy. Owing to its adjustability, the hydrogel platform might be employed in various applications that require intrinsic force sensing of soft matter in future.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:71964
Date03 September 2020
CreatorsNeubauer, Jens W.
ContributorsFery, Andreas, Eychmüller, Alexander, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds