Porous materials (e.g. zeolites, activated carbon, etc.) have found various applications in industry, such as the use as sorbents, catalyst supports and membranes for separation processes. Recently, much attention has been focused on synthesizing porous polymer materials. A vast amount of tailor-made polymeric systems with tunable properties has been investigated. Very often, however, the starting substances for these polymers are of petrochemical origin, and the processes are all in all not sustainable. Moreover, the new polymers have challenged existing characterizing methodologies. These have to be further developed to address the upcoming demands of the novel materials. Some standard techniques for the analysis of porous substances like nitrogen sorption at 77 K do not seem to be sufficient to answer all arising questions about the microstructure of such materials. In this thesis, microporous polymers from an abundant natural resource, betulin, will be presented. Betulin is a large-scale byproduct of the wood industry, and its content in birch bark can reach 30 wt.%. Based on its rigid structure, polymer networks with intrinsic microporosity could be synthesized and characterized. Apart from standard nitrogen and carbon dioxide sorption at 77 K and 273 K, respectively, gas sorption has been examined not only with various gases (hydrogen and argon) but also at various temperatures. Additional techniques such as X-ray scattering and xenon NMR have been utilized to enable insight into the microporous structure of the material. Starting from insoluble polymer networks with promising gas selectivities, soluble polyesters have been synthesized and processed to a cast film. Such materials are feasible for membrane applications in gas separation. Betulin as a starting compound for polyester synthesis has aided to prepare, and for the first time to thoroughly analyse a microporous polyester with respect to its pores and microstructure. It was established that nitrogen adsorption at 87 K can be a better method to solve the microstructure of the material. In addition to that, other betulin-based polymers such as polyurethanes and polyethylene glycol bioconjugates are presented. Altogether, it has been shown that as an abundant natural resource betulin is a suitable and cheap starting compound for some polymers with various potential applications. / Das Bestreben, ölbasierte Produkte durch nachwachsende Rohstoffe zu ersetzen, hat dazu geführt, dass in immer größerer Zahl günstige, reichlich vorhandene Naturstoffe als Ausgangsstoffe für chemische Synthesen untersucht werden. In dieser Arbeit werden Polymere auf Basis von Betulin, einem aus Birkenrinde extrahierten Naturstoff, vorgestellt. Betulin ist zu 30 Gewichtsprozent in Birkenrinde enthalten. Da Betulin ein Nebenprodukt der Holzindustrie ist, ist es kostengünstig und sein Einsatz als Ausgangsstoff äußerst lukrativ. Die ersten Berichte über Betulin-basierte Polymere sind in den 1980er Jahren in Russland und Finnland erschienen, in den Ländern mit großen natürlichen Vorkommen an Birken.
Betulin wurde in dieser Arbeit verwendet, um sogenannte mikroporöse Polymere herzustellen. Dies sind Stoffe mit Poren von molekularer Dimension. Mikroporöse Materialien sind wegen ihrer potentiellen Anwendung als Katalysatorträger und Gasseparationsmembranen hochinteressant.
Die Klasse mikroporöser Polymere wurde durch die Synthese von unlöslichen Betulin-basierten Polyesternetzwerken erweitert. Außerdem gelang es, lösliche Polyester in Form dünner Filme herzustellen. Diese zeigten vielversprechende Ergebnisse in der Trennung von Stickstoff und Kohlendioxid und weisen somit Potential für die Nutzung als Membran auf. Dies könnte z. B. für Kohlendioxid-Reduzierung in Postcombustion-Verfahren interessant sein. Überdies wurde gezeigt, dass Stickstoffadsorption bei 77 K nicht ohne weiteres als Standardmethode für die Analyse von mikroporösen Materialien geeignet ist und dass die mikroporösen Materialien ferner durch Stickstoffadsorption bei 87 K und andere Gassorptionsmethoden bei verschiedenen Temperaturen zu charakterisieren sind. Diese Arbeit trägt zum besseren Verständnis mikroporöser Polymere bei.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:6138 |
Date | January 2012 |
Creators | Jeromenok, Jekaterina |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Chemie |
Source Sets | Potsdam University |
Language | English |
Detected Language | English |
Type | Text.Thesis.Doctoral |
Format | application/pdf |
Rights | http://creativecommons.org/licenses/by-nc-sa/3.0/de/ |
Page generated in 0.0021 seconds