Return to search

Water Soluble Polymer Stabilized Iron(0) Nanoclusters: A Cost Effective And Magnetically Recoverable Catalyst In Hydrogen Generation From The Hydrolysis Of Ammonia Borane

The property transition metal nanoclusters are more active catalysts than their bulk counterparts because of increasing proportion of surface atoms with decreasing paricle size. The development of efficient and economical catalysts to further improve the kinetic properties under moderate conditions is therefore important for the practical application of nanoclusters as catalyst in the hydrogen generation from hydrolysis of ammonia borane this. In this regard, the development of active iron catalysts is a desired goal because it is the most ubiquitous of the transition metals, the fourth most plentiful element in the Earth&rsquo / s crust. In this dissertation, we report the preparation, characterization and investigation of the catalytic activity of the water soluble polymer stabilized iron(0) nanoclusters. They were prepared from the reduction of iron(III) chloride by a mixture of sodium borohydride (NaBH4, SB) and ammonia borane (H3NBH3, AB) mixture in the presence of polyethylene glycol (PEG) as stabilizer and ethylene glycol as solvent at 80 &deg / C under nitrogen atmosphere. PEG stabilized iron(0) nanoclusters were isolated from the reaction solution by centrifugation and characterized by SEM, EDX, TEM, HRTEM, XRD, UV-Vis, ICP-OES and FT-IR techniques. PEG stabilized iron(0) nanoclusters have almost uniform size distribution with an average particle size of 6.3 &plusmn / 1.5 nm. They were redispersible in water and yet highly active catalyst in hydrogen generation from the hydrolysis of AB. They provide a turnover frequency of TOF = 6.5 min-1 for the hydrolysis of AB at 25.0 &plusmn / 0.5 &deg / C. The TOF value is the best ever reported among the Fe catalyst and comparable to other non-noble metal catalyst systems for the catalytic hydrolysis of AB. Kinetics of hydrogen generation from the hydrolysis of AB in the presence of PEG stabilized iron(0) nanoclusters were also studied by varying the catalyst concentration, substrate concentration, and temperature. This is the first kinetic study on the hydrolysis of AB in the presence of an iron catalyst. Moreover, PEG stabilized iron(0) nanoclusters can be separated magnetically from the catalytic reaction solution by using a magnet and show catalytic activity even after tenth run.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12613427/index.pdf
Date01 July 2011
CreatorsDinc, Melek
ContributorsOzkar, Saim
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0016 seconds