L’objectif de ce travail de thèse a été d’améliorer les propriétés barrière du polycarbonate (PC), polymère rigide et transparent utilisé dans l’industrie automobile comme matériau pour phares de voiture. Le PC est le siège de transferts de molécules de gaz et vapeurs provenant de l’intérieur et/ou de l’extérieur des optiques et également de migration de petites espèces (monomères, additifs) au sein de la matière elle-même. Ces phénomènes amènent souvent une perte de transparence du PC et d’autant plus avec la technologie LED qui ne dissipe pas la condensation. Pour y remédier, nous avons utilisé trois approches différentes permettant d’accroître la résistance au transfert des matériaux, à commencer par le traitement de surface par plasma froid afin de déposer sur le substrat de PC une couche barrière organosiliciée. La polymérisation de cette couche est effectuée en mélangeant du dioxygène avec un précurseur organosilicié : l’hexaméthyldisiloxane (HMDSO), le 2,4,6,8-tétraméthylcyclotétrasiloxane (TMCTS) ou le triéthoxyfluorosilane (TEOFS). Les autres approches axées sur les mélanges et l’incorporation de charges ont consisté à élaborer d’une part des micr/nano composites de PC/mica et de l’autre des mélanges de polymères PC/poly(m-xylène adipamide) (MXD6) et enfin le mélange chargéPC/MXD6/mica. Ces films ont été préparés à l’aide d’une extrudeuse bis-vis équipée d’éléments mélangeurs ayant pour but d’améliorer la qualité de mélange de dispersion de la matière. L’ensemble des matériaux obtenus a été caractérisé afin d’établir des relations de structure/morphologie/propriétés. Le dépôt par plasma a permis non seulement d’augmenter la résistance thermique du PC, mais aussi d’accroître son effet barrière à l’eau mais surtout aux gaz (N₂, O₂ et CO₂). L’efficacité du traitement plasma vis-à-vis de l’eau est fortement dépendante du caractère hydrophile du dépôt et de sa densité. Si les composites PC/mica élaborés avec les mélangeurs sont plus barrière à l’eau qu’aux gaz, les mélanges PC/MXD6 sont au contraire bien plus efficaces vis-à-vis des gaz que de l’eau. Ainsi l’ajout du mica à faible taux dans le mélange PC/MXD6 a permis, par effet de piégeage, d’accroître davantage la résistance à l’eau du mélange tout en maintenant des bonnes propriétés barrière aux gaz. Outre les effets barrière obtenus, nous avons réussi, par l’utilisation des éléments mélangeurs, à augmenter la stabilité thermique du PC et à conserver la transparence des films de PC/mica, PC/MXD6 et PC/MXD6/mica. / The aim of the present thesis is to improve the barrier properties of polycarbonate (PC), a stiff and transparent polymer used in automotive industry as material for car headlights. PC represents a place of transfer of gas molecules and vapors coming from inside and/or outside the optics and also of migration of small species (monomers, additives) within the material itself. These phenomena often lead to a loss of the PC transparency, especially with the LED technology which does not allow the condensation dissipation. In order to overcome this limitation, three different approaches allowing the increase of materials transfer resistance were chosen. The first approach consists in the cold plasma surface treatment in order to obtain a barrier organosilicon layer on the PC substrate. This layer is obtained using a mixture of oxygen with an organosilicon precursor : hexamethyldisiloxane (HMDSO), 2,4,6,8-tetramethylcyclotetrasiloxane (TMCTS) or triethoxyfluorosilane (TEOFS). The other approaches focused on the incorporation of fillers and polymer blends permit the elaboration of micro/nano-composites of PC/mica, PC/poly(m-xylene adipamide) (MXD6) polymer blends and charged PC/MXD6/mica blends. These films were prepared using a double-screw extruder equipped with mix elements allowing the improvement of the quality and dispersion of the blend. The physico-chemical characterization of the obtained materials highlights the structure/morphology/properties relationship. The plasma deposition allows an increase of the PC thermal resistance as well as its barrier properties toward water and especially gas (N₂, O₂ and CO₂). The efficiency of the plasma treatment toward water molecules strongly depends on the layer hydrophilicity and density. PC/mica composites elaborated with mix elements are found to be more barrier toward water than toward gas, while PC/MXD6 blends are more efficient toward gas than water. Thus, the addition of low mica contents in the PC/MXD6 blend allowed to further increase the water resistance of the blend by trapping effect, while maintaining its high barrier properties toward gas. In addition, an increase of the PC thermal stability and a presevation of the transparency of PC/mica, PC/MXD6 and PC/MXD6/mica films were revealed using mix elements.
Identifer | oai:union.ndltd.org:theses.fr/2019NORMR057 |
Date | 21 October 2019 |
Creators | Diawara, Bassidi |
Contributors | Normandie, Marais, Stéphane, Fatyeyeva, Kateryna |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0046 seconds