As easy target reservoirs are depleted around the world, the need for intelligent enhanced oil recovery (EOR) methods increases. The first part of this work is focused on modeling aspects of novel chemical EOR methods for naturally fractured reservoirs (NFR) involving wettability modification towards more water wet conditions. The wettability of preferentially oil wet carbonates can be modified to more water wet conditions using alkali and/or surfactant solutions. This helps the oil production by increasing the rate of spontaneous imbibition of water from fractures into the matrix. This novel method cannot be successfully implemented in the field unless all of the mechanisms involved in this process are fully understood. A wettability alteration model is developed and implemented in the chemical flooding simulator, UTCHEM. A combination of laboratory experimental results and modeling is then used to understand the mechanisms involved in this process and their relative importance. The second part of this work is focused on modeling surfactant/polymer floods using a fully implicit scheme. A fully implicit chemical flooding module with comprehensive oil/brine/surfactant phase behavior is developed and implemented in general purpose adaptive simulator, GPAS. GPAS is a fully implicit, parallel EOS compositional reservoir simulator developed at The University of Texas at Austin. The developed chemical flooding module is then validated against UTCHEM. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/6681 |
Date | 05 November 2009 |
Creators | Fathi Najafabadi, Nariman |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Format | electronic |
Rights | Copyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. |
Page generated in 0.0019 seconds