Return to search

Neutron-mapping polymer flow: scattering, flow visualization and molecular theory.

No / Flows of complex fluids need to be understood at both macroscopic and molecular scales, because it is the macroscopic response that controls the fluid behavior, but the molecular scale that ultimately gives rise to rheological and solid-state properties. Here the flow field of an entangled polymer melt through an extended contraction, typical of many polymer processes, is imaged optically and by small-angle neutron scattering. The dual-probe technique samples both the macroscopic stress field in the flow and the microscopic configuration of the polymer molecules at selected points. The results are compared with a recent "tube model" molecular theory of entangled melt flow that is able to calculate both the stress and the single-chain structure factor from first principles. The combined action of the three fundamental entangled processes of reptation, contour length fluctuation, and convective constraint release is essential to account quantitatively for the rich rheological behavior. The multiscale approach unearths a new feature: Orientation at the length scale of the entire chain decays considerably more slowly than at the smaller entanglement length.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/3862
Date January 2003
CreatorsBent, J., Hutchings, L.R., Richards, R.W., Gough, Tim, Spares, Robert, Coates, Philip D., Grillo, I., Harlen, O.G., Read, D.J., Graham, R.S.
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeArticle, No full-text available in the repository

Page generated in 0.0021 seconds