<p>The urgent need for new, sustainable energy source intrigues scientists to provide the solution by developing new technology. Polymer solar cell appears to be the most promising candidate for its low cost, flexibility, and massive producibility. Novel polymers have been constantly synthesized and investigated, while the use of PCBM as acceptor seems to be the universal choice. Here, we studied the use of four dierent fullerene derivatives - [60]PCBM, [70]PCBM, and their bisadduct analogues - as acceptor in APFO-3 solar cells. A series of investigations were performed to study how the processing parameters - blend ratio, spin speed, and choice of solvent - influence the device performance. Using bisadduct fullerenes results in an enhanced Voc, as predicted by the up-shift of energy levels, but a strongly reduced Jsc, hence a poor PCE. Photoluminescence study indicates that all APFO-3:fullerene devices are limited by the inefficient dissociation of fullerene excitations, while it becomes more influential when bisadduct fullerenes were used as acceptor. The best device in this study was fabricated by using [70]PCBM as acceptor and chlorobenzene as solvent, exhibits a PCE of 2.9%, for the strong absorption, ne morphology, and comparatively strong driving force.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-57796 |
Date | January 2010 |
Creators | Hsu, Yu-Te |
Publisher | Linköping University, Department of Physics, Chemistry and Biology |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0018 seconds