abstract: In vitro selection technologies allow for the identification of novel biomolecules endowed with desired functions. Successful selection methodologies share the same fundamental requirements. First, they must establish a strong link between the enzymatic function being selected (phenotype) and the genetic information responsible for the function (genotype). Second, they must enable partitioning of active from inactive variants, often capturing only a small number of positive hits from a large population of variants. These principles have been applied to the selection of natural, modified, and even unnatural nucleic acids, peptides, and proteins. The ability to select for and characterize new functional molecules has significant implications for all aspects of research spanning the basic understanding of biomolecules to the development of new therapeutics. Presented here are four projects that highlight the ability to select for and characterize functional biomolecules through in vitro selection.
Chapter one outlines the development of a new characterization tool for in vitro selected binding peptides. The approach enables rapid screening of peptide candidates in small sample volumes using cell-free translated peptides. This strategy has the potential to accelerate the pace of peptide characterization and help advance the development of peptide-based affinity reagents.
Chapter two details an in vitro selection strategy for searching entire genomes for RNA sequences that enhance cap-independent initiation of translation. A pool of sequences derived from the human genome was enriched for members that function to enhance the translation of a downstream coding region. Thousands of translation enhancing elements from the human genome are identified and the function of a subset is validated in vitro and in cells.
Chapter three discusses the characterization of a translation enhancing element that promotes rapid and high transgene expression in mammalian cells. Using this ribonucleic acid sequence, a series of full length human proteins is expressed in a matter of only hours. This advance provides a versatile platform for protein synthesis and is espcially useful in situations where prokaryotic and cell-free systems fail to produce protein or when post-translationally modified protein is essential for biological analysis.
Chapter four outlines a new selection strategy for the identification of novel polymerases using emulsion droplet microfluidics technology. With the aid of a fluorescence-based activity assay, libraries of polymerase variants are assayed in picoliter sized droplets to select for variants with improved function. Using this strategy a variant of the 9°N DNA polymerase is identified that displays an enhanced ability to synthesize threose nucleic acid polymers. / Dissertation/Thesis / Doctoral Dissertation Biological Design 2015
Identifer | oai:union.ndltd.org:asu.edu/item:29827 |
Date | January 2015 |
Contributors | Larsen, Andrew (Author), Chaput, John C (Advisor), Jacobs, Bertram L (Committee member), Karr, Timothy L (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Doctoral Dissertation |
Format | 144 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved |
Page generated in 0.0023 seconds