Electrochemical systems, which rely on coupled phenomena of the chemical change and electricity, have been utilized for development an interface between biological systems and conventional electronics. The development and detailed understanding of the operation mechanism of such interfaces have a great importance to many fields within life science and conventional electronics. Conducting polymer materials are extensively used as a building block in various applications due to their ability to transduce chemical signal to electrical one and vice versa. The mechanism of the coupling between the mass and charge transfer in electrochemical systems, and particularly in conductive polymer based system, is highly complex and depends on various physical and chemical properties of the materials composing the system of interest. The aims of this thesis have been to study electrochemical systems including conductive polymer based systems and provide knowledge for future development of the devices, which can operate with both chemical and electrical signals. Within the thesis, we studied the operation mechanism of ion bipolar junction transistor (IBJT), which have been previously utilized to modulate delivery of charged molecules. We analysed the different operation modes of IBJT and transition between them on the basis of detailed concentration and potential profiles provided by the model. We also performed investigation of capacitive charging in conductive PEDOT:PSS polymer electrode. We demonstrated that capacitive charging of PEDOT:PSS electrode at the cyclic voltammetry, can be understood within a modified Nernst-Planck-Poisson formalism for two phase system in terms of the coupled ion-electron diffusion and migration without invoking the assumption of any redox reactions. Further, we studied electronic structure and optical properties of a self-doped p-type conducting polymer, which can polymerize itself along the stem of the plants. We performed ab initio calculations for this system in undoped, polaron and bipolaron electronic states. Comparison with experimental data confirmed the formation of undoped or bipolaron states in polymer film depending on applied biases. Finally, we performed simulation of the reduction-oxidation reaction at microband array electrodes. We showed that faradaic current density at microband array electrodes increases due to non-linear mass transport on the microscale compared to the corresponding macroscale systems. The studied microband array electrode was used for developing a laccase-based microband biosensor. The biosensor revealed improved analytical performance, and was utilized for in situ phenol detection.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-135429 |
Date | January 2017 |
Creators | Volkov, Anton |
Publisher | Linköpings universitet, Fysik och elektroteknik, Linköpings universitet, Tekniska fakulteten, Linköping |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Linköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1841 |
Page generated in 0.0024 seconds