Mask Projection micro Stereolithography (MPuSLA) is an additive manufacturing process used to build physical components out of a photopolymer resin. Existing MPuSLA technology cut the CAD model of part into slices by horizontal planes and the slices are stored as bitmaps. A layer corresponding to the shape of each bitmap gets cured. This layer is coated with a fresh layer of resin by lowering the Z-stage inside a vat holding the resin and the next layer is cured on top of it.
In our Thick-film MPuSLA(TfMPuSLA) system, incident radiation, patterned by a dynamic mask, passes through a fixed transparent substrate to cure photopolymer resin. The existing MPuSLA fabrication models can work only for controlling the lateral dimension, without any control over the thickness of the cured part. The proposed process plan controls both the lateral dimensions and the thickness of profile of the cured part.
In this thesis, a novel process planning for TfMPuSLA method is developed, to fabricate films on fixed flat substrate. The process of curing a part using this system is analytically modeled as the column cure model. It is different from the conventional process - layer cure model. Column means that a CAD model of part is discretized into vertical columns instead of being sliced into horizontal layers, and all columns get cured simultaneously till the desired heights. The process planning system is modularized into geometrical, chemical, optical, mathematical and physical modules and validated by curing test parts on our system. The thesis formulates a feasible process planning method, providing a strong basis for continued investigation of MPuSLA technology in microfabrication, such as micro lens fabrication.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/28097 |
Date | 26 March 2009 |
Creators | Zhao, Xiayun |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Thesis |
Page generated in 0.0014 seconds