A new thiophene derivative containing menthyl group (MM) was synthesized and polymerized via chemical and electrochemical methods. Polymers obtained and MM itself were used to synthesize copolymers with pyrrole under conditions of constant potential electrolysis. Cyclic Voltammetry, thermal analysis and scanning electron microscopy analyses were performed for the characterization of samples.
Immobilization of invertase and polyphenol oxidase enzymes was performed in the matrices obtained via copolymerization of MM with pyrrole. Immobilization was carried out via entrapment of enzyme in matrices during the polymerization of pyrrole. Temperature optimization, operational stability and shelf-life of the enzyme electrodes were investigated. Maximum reaction rate (Vmax) and Michaelis-Menten constant (Km) were determined.
It is known that wine includes phenolic groups that give astringency in high concentrations. Polyphenol oxidase (PPO) converts mono and diphenols to quinone. By analyzing the product, one can find out the amount of phenolic groups. By using obtained enzyme electrodes via immobilization of PPO, amount of phenolics in different wines were analyzed.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12604912/index.pdf |
Date | 01 May 2004 |
Creators | Kiralp, Senem |
Contributors | Toppare, Levent |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | Ph.D. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0015 seconds