Ce travail explore l'utilisation de l'effet magnéto-optique pour étudier la dynamique de spin des électrons de conduction dans les semi-conducteurs non magnétiques lorsqu'ils sont pompés avec des photons polarisés circulairement. En général, les moments magnétiques hors-équilibre induits optiquement dans les semi-conducteurs non magnétiques sont plus petits que ceux des matériaux magnétiques. L'effet magnéto-optique en principe offre une sensibilité suffisante pour détecter ces faibles moments magnétiques via une mesure de rotation Faraday dans la limite de bruit de photons. Nous avons comparés trois méthodes de détection: les polariseurs partiellement croisés, l’interféromètre de Sagnac et le pont optique. L'interféromètre de Sagnac se révèle fonctionnellement équivalent aux polariseurs partiellement croisés, avec une sensibilité diminuée par la perte de photons à chacun des séparateurs de faisceaux nécessairement présents dans cette configuration expérimentale. Par contre, il a été démontré précédemment que les interféromètres de Sagnac permettent de faire la distinction entre les rotations dites réciproques et non réciproques, et cette thèse propose de nouvelles géométries de Sagnac pour distinguer les rotations en fonction de leurs symétries en temps et en parité. La technique du pont optique présente les meilleures performances. Elle permet une mesure de l'angle de rotation de Faraday limitée par le bruit de photons, même avec des puissances lumineuses importantes reçues par les détecteurs, ce qui permet d'obtenir la meilleure figure de mérite possible. Dans les expériences conduites sur des matériaux magnétiques, un bruit de quelques nrad/√Hz a été mesuré pour une puissance de sonde de 10 mW. Une série de mesures de rotation Faraday pompe-sonde à température ambiante a été réalisée sur GaAs pompé optiquement. Les plus grands signaux sont obtenus lorsque le moment magnétique généré et détecté est maximisé en focalisant fortement les faisceaux pompe et sonde et en choisissant une longueur d'onde de la sonde accordée à une résonance optique dans la structure électronique. Les mesures en champ magnétique transversal montrent un champ Hanle de 0.43 T, à partir duquel on déduit la durée de vie de spin de 88 ps. / This work explores the use of the magneto-optical Kerr effect to study conduction electron spin dynamics in non-magnetic semiconductors when pumped with circularly polarized photons. Typically, non-equilibrium, optically-induced magnetic moments in non-magnetic semiconductors are orders of magnitude smaller than those of magnetized materials, including both magnetic and non-magnetic materials in an external magnetic field. The magneto-optical Kerr effect in principal offers sufficient sensitivity to detect such small magnetic moment via a measurement of the Faraday rotation angle of a probe beam in the photon shot noise limit. Three detection configurations have been experimentally compared: partially crossed polarizers, a Sagnac interferometer and an optical bridge. The Sagnac interferometer is shown to be functionally equivalent to partially crossed polarizers, although its sensitivity is compromised by lost photons at each of the obligatory beam splitters present in such a geometry. On the other hand, it has previously been shown that Sagnac interferometers can distinguish between so-called reciprocal and non-reciprocal rotations, and this thesis proposes novel Sagnac geometries to distinguish rotations according to their time and parity symmetries. The optical bridge technique allows for a photon-shot noise limited measurement of the Faraday rotation angle, even with large photon intensities on the detectors, thereby yielding the best possible figure-of-merit. In demonstrations on magnetic materials, a noise floor of a few nrad//√Hz was measured for a probe power of 10 mW. A series of room-temperature, pump-probe Faraday rotation measurements is performed on optically pumped GaAs to compare and contrast this method with standard polarized photo-luminescence techniques. The largest signals are found when the locally probed moment is maximized by strongly focusing the pump and probe beams, and by choosing a probe wavelength tuned to an optical resonance in the electronic structure. Measurements in transverse magnetic field show a Hanle field of 0.43 T, from which the spin lifetime of 88 ps is deduced.
Identifer | oai:union.ndltd.org:theses.fr/2018SACLX099 |
Date | 12 December 2018 |
Creators | Zhaksylykova, Indira |
Contributors | Université Paris-Saclay (ComUE), Rowe, Alistair, Peretti, Jacques, Lassailly, Yves |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds