Return to search

Comparison of the population growth potential of South African loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) sea turtles

A beach conservation programme protecting nesting loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) sea turtles in South Africa was started in 1963. As initial numbers of nesting females were low for both species (107 loggerheads and 24 leatherbacks) it was proposed that the protection of eggs, hatchlings and nesting females along the nesting beach would induce population growth and prohibit local extinction. Today, 50 years later, the loggerhead population exceeds 650 females per annum, whereas the leatherback population counts about 65 nesting females per year. The trend for leatherback turtles is that the population has been stable for about 30 years whereas loggerheads are increasing exponentially. Thus, this thesis investigated several life-history traits to explain the differing responses to the ongoing beach conservation programme. Reproductive output and success were assessed for both species; it was hypothesised that environmental conditions are sub-optimal for leatherback turtles to reproduce successfully. It was ascertained that nesting loggerhead females deposit larger clutches than leatherbacks (112 ± SD 20 eggs and 100 ± SD 23 eggs, respectively), but that annual reproductive output per individual leatherback female exceeds that of loggerhead turtles (±700 eggs and ±448 eggs, respectively) because they exhibit a higher intra-seasonal nesting frequency (leatherbacks n = 7 and loggerheads n = 4 from Nel et al. 2013). Emergence success (i.e. the percentage of hatchlings produced) per nest was similar for both species (loggerhead 73.6 ± SD 27.68 % and leatherback turtles 73.8 ± SD 22.70 %), but as loggerhead turtles nest in greater numbers, i.e. producing more hatchlings per year, the absolute population growth potential favours the loggerhead turtle. The second factor investigated was sex ratio because sea turtles display temperature-dependent sex determination (TSD) where extreme incubation temperatures can skew the sex ratio (i.e. feminising or masculinising a clutch). It was suspected that leatherback turtles are male-biased as this is the southern-most rookery (for both species). Further, leatherback nests are generally closer to the high tide mark, which might induce a cooling effect. Standard histological techniques were applied to sex hatchlings and a generalized linear model (GLM) was used to approximate annual sex ratio. Loggerhead sex ratio (2009 - 2011) was estimated at 86.9 ± SE 0.35 % female-biased; however, sufficient replication for the leatherback population was only obtained for season 2010, which indicated a 97.1 % (95 % CI 93.3 - 98.7) female bias. Both species are, thus, highly female-biased, and current sex ratio for leatherback turtles is not prohibiting population growth. Current sex ratios, however, are not necessarily indicative of sex ratios in the past which would have induced present population growth. Thus, to account for present population growth profiles, sex ratios from the past needed to be ascertained. Annual sex ratios (1997 - 2011) were modelled from historical air and sea surface temperatures (SSTs) but no significant change over time was obtained for either loggerhead or leatherback turtles (linear regression; p ≥ 0.45). The average sex ratio over this 15-year period for the South African loggerhead turtle was approximated at 77.1 ± SE 3.36 % female-biased, whereas leatherbacks exhibited a 99.5 ± SE 0.24 % female bias. Re-analysing data from the mid-80s by Maxwell et al. (1988) also indicated a 77.4 % female bias for the South African loggerhead population. It is, therefore, highly likely that sex ratios of the South African loggerhead and leatherback sea turtle populations have been stable for at least three decades and are not accountable for the differing population growth profiles as they are displayed today. Another possibility that could explain the opposed population growth profiles is the time taken for animals to replace themselves, i.e. age at maturity. It was suspected that age at maturity for the South African loggerhead turtle is comparable with that for leatherbacks. Using data from a 30-year mutilation tagging experiment (i.e. notching), age at first reproduction for South African loggerhead females was estimated. Results ranged broadly but a mean of 36.2 ± SD 7.71 years was obtained using a Gaussian distribution. Age at reproduction of the South African leatherback turtle was not determined but the literature suggests a much younger age of 13.3 - 26.8 years (Zug & Parham 1996, Dutton et al. 2005, Avens et al. 2009, Jones et al. 2011). Therefore, population growth would favour leatherback turtles as they exhibit a much shorter generation time. Finally, it was concluded that all life-history parameters investigated favour leatherback turtles, yet loggerheads are displaying population growth. However, as there were no obvious constraints to population growth on the nesting beach, it is suspected that population growth of the South African leatherback turtle is either unobserved (due to inadequate monitoring not capturing sufficient numbers of nesting events to establish a trend) or that population growth is prohibited by some offshore factor such as industrial fisheries (or some other driver not yet identified). Monitoring should, thus, be expanded and offshore mortality monitored as the leatherback population nesting in South Africa is still critically endangered with nesting numbers dangerously low.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:20793
Date January 2014
CreatorsTucek, Jenny Bianka
PublisherNelson Mandela Metropolitan University, Faculty of Science
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Doctoral, DPhil
Formatx, 152 leaves, pdf
RightsNelson Mandela Metropolitan University

Page generated in 0.0494 seconds