Return to search

Modeling the Effects of Introducing a New Antibiotic in a Hospital Setting: A Case Study

The increase in antibiotic resistance continues to pose a public health risk as very few new antibiotics are being produced, and bacteria resis- tant to currently prescribed antibiotics is growing. Within a typical hospital setting, one may find patients colonized with bacteria resistant to a single an- tibiotic, or, of a more emergent threat, patients may be colonized with bacteria resistant to multiple antibiotics. Precautions have been implemented to try to prevent the growth and spread of antimicrobial resistance such as a reduction in the distribution of antibiotics and increased hand washing and barrier pre- ventions; however, the rise of this resistance is still evident. As a result, there is a new movement to try to re-examine the need for the development of new antibiotics. In this paper, we use mathematical models to study the possible benefits of implementing a new antibiotic in this setting; through these models, we examine the use of a new antibiotic that is distributed in various ways and how this could reduce total resistance in the hospital. We compare several dif- ferent models in which patients colonized with both single and dual-resistant bacteria are present, including a model with no additional treatment proto- cols for the population colonized with dual-resistant bacteria as well as models including isolation and/or treatment with a new antibiotic. We examine the benefits and limitations of each scenario in the simulations presented.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-17491
Date01 July 2012
CreatorsJoyner, Michele L., Manning, Cammey C., Canter, Brandi N.
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
SourceETSU Faculty Works

Page generated in 0.0037 seconds