The increase in antibiotic resistance continues to pose a public health risk as very few new antibiotics are being produced, and bacteria resis- tant to currently prescribed antibiotics is growing. Within a typical hospital setting, one may find patients colonized with bacteria resistant to a single an- tibiotic, or, of a more emergent threat, patients may be colonized with bacteria resistant to multiple antibiotics. Precautions have been implemented to try to prevent the growth and spread of antimicrobial resistance such as a reduction in the distribution of antibiotics and increased hand washing and barrier pre- ventions; however, the rise of this resistance is still evident. As a result, there is a new movement to try to re-examine the need for the development of new antibiotics. In this paper, we use mathematical models to study the possible benefits of implementing a new antibiotic in this setting; through these models, we examine the use of a new antibiotic that is distributed in various ways and how this could reduce total resistance in the hospital. We compare several dif- ferent models in which patients colonized with both single and dual-resistant bacteria are present, including a model with no additional treatment proto- cols for the population colonized with dual-resistant bacteria as well as models including isolation and/or treatment with a new antibiotic. We examine the benefits and limitations of each scenario in the simulations presented.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-17491 |
Date | 01 July 2012 |
Creators | Joyner, Michele L., Manning, Cammey C., Canter, Brandi N. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0037 seconds