Les mécanismes responsables du transport hydrodynamique anormal (non-Fickéen) peuvent être rattachés à la complexité de la géométrie du milieu à l'échelle des pores. Dans cette thèse, nous étudions la dynamique des vitesses de particules à l'échelle des pores. À l'aide de simulations de suivi de particules effectuées sur un échantillon numérisé de grès de Berea, nous présentons une analyse détaillée de l'évolution Lagrangienne et Eulérienne et de leur dépendance aux conditions initiales. Le long de leur ligne de courant, la vitesse des particules montre un signal intermittent complexe, alors que leur sériede vitesses spatiales présente des fluctuations régulières. La distribution spatiale des vitesses des particules converge rapidementvers l'état stationnaire. Ces résultats dénotent un processus Markovienqui permet de prédire les fluctuations de vitesse dans le réseau poral.Ces processus, associés à la tortuosité et à la distance de corrélation de vitesse permettent de paramétrer un modèle de marche aléatoire dans le temps (CTRW) et de réaliser le changement d’échelle pour simuler le transport à l’échelle de Darcy. Le modèle, comme tout modèle issu d’un changement d'échelle, repose sur la définition d'un volume élémentaire représentatif (VER). Nous montrons qu’un VER basé sur les statistiques de vitesse permet de définir un support pertinent pour la modélisation du transport hydrodynamique pré-asymptotique à asymptotique, et ainsi d’éviter les limitations associées à l’équation d’advection-dispersionFickéenne. Cette approche est utilisée pour étudier l’impact de l’hétérogénéité du réseau poral sur le volume de mélange et la masse du produit d’une réaction bimoléculaire. / The mechanisms responsible for anomalous (non-Fickian) hydrodynamictransport can be traced back to the complexity of the medium geometry atthe pore-scale. In this thesis, we investigate the dynamics of pore-scaleparticle velocities. Using particle tracking simulations performed on adigitized Berea sandstone sample, we present a detailed analysis of theevolution of the Lagrangian and Eulerian evolution and their dependenceon the initial conditions. The particles experience a complexintermittent temporal velocity signal along their streamline while theirspatial velocity series exhibit regular fluctuations. The spatialvelocity distribution of the particles converges quickly to thesteady-state. These results lead naturally to Markov processes for theprediction of these velocity series.These processes, together with the tortuosity and the velocitycorrelation distance that are properties of the medium, allow theparameterization of a continuous time random walk (CTRW) for theupscaling of the transport. The model, like any upscaled model, relieson the definition of a representative elementary volume (REV). We showthat an REV based on the velocity statistics allows defining a pertinentsupport for modeling pre-asymptotic to asymptotic hydrodynamictransport at Darcy scale using, for instance, CTRW, thus overcomingthe limitations associated with the Fickian advection dispersionequation. Finally, we investigate the impact of pore-scale heterogeneityon a bimolecular reaction and explore a methodology for the predictionof the mixing volume and the chemical mass produced.
Identifer | oai:union.ndltd.org:theses.fr/2019MONTG016 |
Date | 25 April 2019 |
Creators | Puyguiraud, Alexandre |
Contributors | Montpellier, Gouze, Philippe, Dentz, Marco |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds