Return to search

Scaling laws in permeability and thermoelasticity of random media

Under consideration is the finite-size scaling of two thermomechanical responses of random heterogeneous materials. Stochastic mechanics is applied here to the modeling of heterogeneous materials in order to construct the constitutive relations. Such relations (e.g. Hooke's Law in elasticity or Fourier's Law in heat transfer) are well-established under spatial homogeneity assumption of continuum mechanics, where the Representative Volume Element (RVE) is the fundamental concept. The key question is what is the size L of RVE? According to the separation of scales assumption, L must be bounded according to d<L<<LMacro where d is the microscale (or average size of heterogeneity), and LMacro is the macroscale of a continuum mechanics problem. Statistically, for spatially ergodic heterogeneous materials, when the mesoscale is equal to or bigger than the scale of the RVE, the elements of the material can be considered homogenized. In order to attain the said homogenization, two conditions must be satisfied: (a) the microstructure's statistics must be spatially homogeneous and ergodic; and (b) the material's effective constitutive response must be the same under uniform boundary conditions of essential (Dirichlet) and natural (Neumann) types. / In the first part of this work, the finite-size scaling trend to RVE of the Darcy law for Stokesian flow is studied for the case of random porous media, without invoking any periodic structure assumptions, but only assuming the microstructure's statistics to be spatially homogeneous and ergodic. By analogy to the existing methodology in thermomechanics of solid random media, the Hill-Mandel condition for the Darcy flow velocity and pressure gradient fields was first formulated. Under uniform essential and natural boundary conditions, two variational principles are developed based on minimum potential energy and complementary energy. Then, the partitioning method was applied, leading to scale dependent hierarchies on effective (RVE level) permeability. The proof shows that the ensemble average of permeability has an upper bound under essential boundary conditions and a lower bound under uniform natural boundary conditions. / To quantitatively assess the scaling convergence towards the RVE, these hierarchical trends were numerically obtained for various porosities of random disk systems, where the disk centers were generated by a planar Poisson process with inhibition. Overall, the results showed that the higher the density of random disks---or, equivalently, the narrower the micro-channels in the system---the smaller the size of RVE pertaining to the Darcy law. / In the second part of this work, the finite-size scaling of effective thermoelastic properties of random microstructures were considered from Statistical to Representative Volume Element (RVE). Similarly, under the assumption that the microstructure's statistics are spatially homogeneous and ergodic, the SVE is set-up on a mesoscale, i.e. any scale finite relative to the microstructural length scale. The Hill condition generalized to thermoelasticity dictates uniform essential and natural boundary conditions, which, with the help of two variational principles, led to scale dependent hierarchies of mesoscale bounds on effective (RVE level) properties: thermal expansion strain coefficient and stress coefficient, effective stiffness, and specific heats. Due to the presence of a non-quadratic term in the energy formulas, the mesoscale bounds for the thermal expansion are more complicated than those for the stiffness tensor and the heat capacity. To quantitatively assess the scaling trend towards the RVE, the hierarchies are computed for a planar matrix-inclusion composite, with inclusions (of circular disk shape) located at points of a planar, hard-core Poisson point field. Overall, while the RVE is attained exactly on scales infinitely large relative to microscale, depending on the microstructural parameters, the random fluctuations in the SVE response become very weak on scales an order of magnitude larger than the microscale, thus already approximating the RVE. / Based on the above studies, further work on homogenization of heterogeneous materials is outlined at the end of the thesis. / Keywords: Representative Volume Element (RVE), heterogeneous media, permeability, thermal expansion, mesoscale, microstructure.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.102973
Date January 2006
CreatorsDu, Xiangdong, 1967-
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Engineering (Department of Mechanical Engineering.)
Rights© Xiangdong Du, 2006
Relationalephsysno: 002590059, proquestno: AAINR32174, Theses scanned by UMI/ProQuest.

Page generated in 0.0017 seconds