Return to search

Synthesis and studies of gadolinium texaphyrin conjugates and model platinum therapeutic agents

The experimental cancer therapeutic agent gadolinium texaphyrin (MGd) is a cationic paramagnetic expanded porphyrin currently being tested as an X-Ray sensitizing (XRS) agent, and is a compound with demonstrated tumor localization. Additionally MGd shows promise as a chemotherapeutic agent, both as a stand-alone agent, and showing activity in vitro with ascorbate via a novel ROS generating mechanism.3 This dissertation reports the synthesis, characterization, and cell studies of novel MGdfluorophore, and platinum therapeutic conjugates. Also discussed are cationic Pt agents having cytotoxic activity. In this research we set out to answer three questions: i) can fluorescent conjugates of MGd be synthesized, with observable subcellular localization, different from that of MGd, ii) can MGd-Pt conjugates with observable Pt release be synthesized?, and iii) can Pt compounds containing a cationic moiety be tuned to have efficacy comparable to traditional Pt therapeutic agents? Two MGd-xanthene fluorophore conjugates were synthesized with the goal of using them to probe sub-cellular distribution. The anionic (FITC), and cationic (Rhodamine), fluorophore conjugates demonstrated nuclear and mitochondrial localization, respectively. In an ongoing project designed to reduce non-specific agent toxicity, a platinumreleasing MGd therapeutic conjugate was synthesized. The MGd-amidopropylmalonato-Pt conjugate demonstrated efficacy equivalent to carboplatin, a classical “non-selective” agent as inferred from in-vitro studies with A549 lung cancer cells. Aqueous stability studies of this conjugate gave results in agreement with hydrolytic loss of Pt, reversible with added Pt-diaquo. Finally, Pt complexes of amino-1-benzylpyridinium salts were synthesized and found to demonstrate significant cytotoxicity in screening studies. This latter positive development led to the suggestion that complexes of this type could consititute a new class of lipophilic-quaternary-cation Pt therapeutic agents. It is hoped that this series of putative Pt anti-cancer agents will prove useful as both stand-alone therapeutic agents and as the basis for producing conjugate with biolocalizing properties. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/17855
Date11 September 2012
CreatorsFountain, Mark Edward, 1960-
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0018 seconds