Return to search

The ecology of fish inhabiting the inter-tidal zone of Swan Bay, Victoria, Australia.

Swan Bay is a shallow marine embayment of Port Phillip Bay, just north of Queenscliff, Victoria. It has been part of the Harold Holt Marine Reserves since 1977 and is a seagrass habitat. This study investigated the species of fish present in the inter-tidal zone of Swan Bay, collected information on their ecology, investigated the importance of Swan Bay compared to Port Phillip Bay as a nursery and/or breeding area and compared these results with those of similar seagrsss habitats.
Field work was carried out monthly over a two year period, from April 1981 to April 1983, using beach seine nets at Swan Bay and Portarlington.
Forty four species of fish were identified from Swan Bay and nineteen from Portarlington. Fish were most abundant during the summer and autumn months when seagrass growth was at a maximum and least abundant during winter due to the absence of seasonal residents and decreased numbers of permanent residents.
Swan Bay was found to be an important nursery ground for two commercially-caught species: the Yellow-eye Mullet and the King George Whiting. Juvenile Yellow-eye Mullet were more numerous in Swan Bay than at Portarlington. Smell juvenile King George Whiting were more abundant at Portarlington than in Swan Bay where older juveniles were more numerous.
The fish fauna of Swan Bay was found to be similar to western Port but the abundance of species varied. Atherinosome microstoma was the dominant species in terms of abundance and biomass. Diet was found to be different from that reported by Robertson (1979) at Western Port due to the different range of prey items.

Identiferoai:union.ndltd.org:ADTP/217021
Date January 1988
CreatorsJessop, Rosalind Elinor, mikewood@deakin.edu.au
PublisherDeakin University. School of Sciences
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.deakin.edu.au/disclaimer.html), Copyright Rosalind Elinor Jessop

Page generated in 0.0058 seconds