Return to search

Financial Risk Management of Guaranteed Minimum Income Benefits Embedded in Variable Annuities

A guaranteed minimum income benefit (GMIB) is a long-dated option that can be embedded in a deferred variable annuity. The GMIB is attractive because, for policyholders who plan to annuitize, it offers protection against poor market performance during the accumulation phase, and adverse interest rate experience at annuitization. The GMIB also provides an upside equity guarantee that resembles the benefit provided by a lookback option.



We price the GMIB, and determine the fair fee rate that should be charged. Due to the long dated nature of the option, conventional hedging methods, such as delta hedging, will only be partially successful. Therefore, we are motivated to find alternative hedging methods which are practicable for long-dated options. First, we measure the effectiveness of static hedging strategies for the GMIB. Static hedging portfolios are constructed based on minimizing the Conditional Tail Expectation of the hedging loss distribution, or minimizing the mean squared hedging loss. Next, we measure the performance of semi-static hedging strategies for the GMIB. We present a practical method for testing semi-static strategies applied to long term options, which employs nested Monte Carlo simulations and standard optimization methods. The semi-static strategies involve periodically rebalancing the hedging portfolio at certain time intervals during the accumulation phase, such that, at the option maturity date, the hedging portfolio payoff is equal to or exceeds the option value, subject to an acceptable level of risk. While we focus on the GMIB as a case study, the methods we utilize are extendable to other types of long-dated options with similar features.

Identiferoai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/6149
Date January 2011
CreatorsMarshall, Claymore
Source SetsUniversity of Waterloo Electronic Theses Repository
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation

Page generated in 0.0018 seconds