Return to search

Projeto de um observador passivo não-linear e de um controlador backstepping para navios de superfície. / Design of a passive nonlinear observer and a backstepping controller for surface vessels.

Sistemas de Posicionamento Dinâmico (SPD) são sistemas de controle que visam assegurar que um veículo oceânico se mantenha em uma determinada posição ou acompanhe uma trajetória de referência, mediante o emprego exclusivo de seus propulsores. Um SPD pode ser desmembrado em vários módulos específicos, com funções bem determinadas. Os módulos mais importantes são os sistemas de medição de posição e aproamento, o estimador de estados, o controlador e o algoritmo de alocação de empuxos. Atualmente, o Filtro de Kalman Estendido (FKE) é o estimador padrão para todos os SPD comercialmente disponíveis. Entretanto, o emprego do FKE implica em uma série de desvantagens. A sintonização do sistema é demorada e difícil, em função do elevado número de parâmetros de sintonização. Estabilidade assintótica global não pode ser conferida ao sistema. Adicionalmente, é necessário aplicar a técnica de programação de ganhos, uma vez que as equações cinemáticas de movimento do modelo devem ser linearizadas para aproximadamente 36 ângulos de guinada. A fim de eliminar estes óbices, o presente estudo propõe o desenvolvimento de um SPD totalmente não-linear, composto por um observador passivo não-linear e um controlador não-linear backstepping. / Dynamic Positioning Systems (DPS) are control systems used to maintain the vessel on a desired position or pre-defined path exclusively by means of active thrusters. A DPS can be separated into a set of dedicated modules with designated tasks. The most significant modules are the position and heading measurement systems, the state estimator, the controller and the thrust allocation algorithm. Nowadays, the Extended Kalman Filter (EKF) is the standard state estimator for all commercial DPS. However, the EKF technique presents several drawbacks. There is a large number of tuning parameters which requires a time-consuming tuning procedure. Global asymptotic stability cannot be assured to the system. Furthermore, it requires the use of a gain-scheduling technique, since the model is linearized about approximately 36 yaw angles due to the kinematics equations of motions. To solve these problems, this study proposes the development of a fully nonlinear DPS comprising a passive nonlinear observer and a nonlinear backstepping controller.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-11082010-153713
Date05 January 2010
CreatorsAlexis Zakartchouk Junior
ContributorsHelio Mitio Morishita, Hernani Luiz Brinati, Sergio Hamilton Sphaier
PublisherUniversidade de São Paulo, Engenharia Naval e Oceânica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0031 seconds