An urgent transformation from fossil fuels to cleaner energy sources to combat climate change has led to the utilization of renewable energies like solar, wind, and tidal power. However, the intermittency of these sources hinders their wider implementation. To address this, large-scale electrical energy storage (EES) systems are needed. These systems store excess energy during periods of surplus and release it during peak demand, enhancing grid reliability. Secondary batteries have been developed as promising EES solutions due to their reliability, independence from weather, and ease of maintenance. While lithium-ion batteries (LIBs) are popular as secondary batteries, their limited lithium supply, and rising costs demand for cost-effective alternatives. This study focuses on developing sodium iron fluorophosphate (Na2FePO4F) as a promising cathode material for SIBs. Because of its iron-based composition, which is generated from sustainable sources, Na2FePO4F offers a potential solution to the cost and supply difficulties related with LIBs. However, challenges exist, including low electronic conductivity and inferior electrochemical performance. To address these challenges, this research explores mechanochemically assisted solid-state synthesis routes as a low-cost and environmentally friendly approach. The characterization and performance evaluation of Na2FePO4F (NFPF) and NFPF/C positive electrode materials for sodium-ion batteries (SIBs) were systematically investigated through a range of analytical techniques, including XRD, TGA, SEM-EDS, FT-IR, and Raman analyses. A single-step solid-state synthesis demonstrates effectiveness in producing NFPF and NFPF/C-positive electrode materials. Moreover, Fe2O3 nanoparticles serve as the primary iron source in the solid-state synthesis of iron-based fluorophosphate Na2FePO4F/C, successfully producing both NFPF pristine phase and NFPF carbon-coated active materials. Finally, a comparison between the two synthesis pathways reveals that the active material from single-step solid-state synthesis exhibits a superior initial discharge specific capacity of 74.24 mAh⋅g−1 at 0.005 C, outperforming the double-step solid-state synthesis. These findings can contribute to the development of affordable and sustainable energy storage solutions, offering alternatives to traditional LIBs. / En akut omvandling från fossila bränslen till renare energikällor för att bekämpa klimatförändringarna har lett till ett utnyttjande av förnybar energi som sol-, vind- och tidvattenkraft. Emellertid hindrar dessa källors intermittenser deras bredare genomförande. För att komma till rätta med detta behövs storskaliga system för lagring av elektrisk energi (EES). Dessa system lagrar överskottsenergi under perioder med överskott och släpper ut den under toppbelastning, vilket förbättrar nätets tillförlitlighet. Sekundära batterier har utvecklats som lovande EES-lösningar på grund av deras tillförlitlighet, väderberoende och enkla underhåll. Medan litiumjonbatterier (LIB) är populära som sekundära batterier, kräver deras begränsade litiumtillgång och stigande kostnader kostnadseffektiva alternativ. Denna studie fokuserar på att utveckla natriumjärnfluorfosfat (Na2FePO4F) som ett lovande katodmaterial för SIB. På grund av sin järnbaserade sammansättning, som genereras från hållbara källor, erbjuder Na2FePO4F en potentiell lösning på kostnads- och försörjningssvårigheter relaterade till LIB. Men det finns utmaningar, inklusive låg elektronisk konduktivitet och sämre elektrokemisk prestanda. För att möta dessa utmaningar undersöker denna forskning mekanokemiskt assisterade syntesvägar i fast tillstånd som ett billigt och miljövänligt tillvägagångssätt. Karakteriseringen och prestandautvärderingen av Na2FePO4F (NFPF) och NFPF/C positiva elektrodmaterial för natriumjonbatterier (SIB) undersöktes systematiskt genom en rad analytiska tekniker, inklusive XRD, TGA, SEM-EDS, FT-IR och Raman analyser. En enstegs solid state-syntes visar effektivitet vid framställning av NFPF och NFPF/C-positiva elektrodmaterial. Dessutom tjänar Fe2O3-nanopartiklar som den primära järnkällan i solid state-syntesen av järnbaserat fluorfosfat Na2FePO4F/C, vilket framgångsrikt producerar både NFPF orörd fas och NFPF kolbelagda aktiva material. Slutligen avslöjar en jämförelse mellan de två syntesvägarna att det aktiva materialet från enstegs-solid-state-syntes uppvisar en överlägsen initial urladdningsspecifik kapacitet på 74,24 mAh⋅g−1 vid 0,005 C, vilket överträffar dubbelstegs-solid-state-syntesen. Dessa resultat kan bidra till utvecklingen av prisvärda och hållbara energilagringslösningar, som erbjuder alternativ till traditionella LIB.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-340553 |
Date | January 2023 |
Creators | Juwita, Ratna |
Publisher | KTH, Materialvetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-ITM-EX ; 2023:581 |
Page generated in 0.011 seconds