Résumé : La tomographie d’émission par positrons (TEP) permet une imagerie fonctionnelle et moléculaire qui peut bénéficier de l’utilisation conjointe de la tomodensitométrie (TDM), d’abord pour fournir un support anatomique aux images TEP, mais aussi pour permettre une correction plus précise des images TEP. Les appareils existants sont composés de deux scanners juxtaposés nécessitant un déplacement du sujet entre les deux acquisitions, ce qui peut causer des artéfacts de mouvement dans l’image fusionnée TEP/TDM. De plus, le mode de fonctionnement des scanners TDM, basé sur l’intégration du flux de rayons X, délivre une dose de radiations relativement élevée qui peut interférer avec la réalisation d’études/protocoles d’imagerie longitudinales. La réalisation d’un appareil TEP/TDM partageant le même système de détection basé sur le détecteur LabPET II pourrait remédier à ces problèmes. Dans un premier temps, le module de détection LabPET II a été caractérisé pour la TEP et la TDM. Les premières études d’imagerie TDM avec ce détecteur ont aussi été conduites avec un simulateur. Ce travail a permis de déceler un phénomène de diaphonie optique au sein du module de détection. La recherche d’une solution à ce problème a motivé l’évaluation de nouveaux types de réflecteurs métallisés, donc plus opaques, pour en limiter les effets. Le signal relativement faible détecté en TDM a par la suite mené à explorer des scintillateurs alternatifs présentant un rendement lumineux supérieur. L’un de ces scintillateurs permettra d’améliorer sensiblement les performances du scanner LabPET I et pourrait être retenu pour la génération future de scanners LabPET II. || Abstract : Positron emission tomography (PET) provides functional and molecular imaging capabilities that can benefit from joint use with computed tomography (CT), first to provide anatomical support to PET images, but also to allow a more precise correction of PET images. Existing devices are composed of two back-to-back scanners which require displacing the subject between the two acquisitions, possibly causing motion artifacts in the fused PET/CT images. Moreover, the operation mode of CT scanners based on the X-ray signal integration delivers a relatively high radiation dose that can interfere with longitudinal imaging studies/protocols. The realization of a PET/CT scanner sharing the same detection system for both 511 keV and X-ray photons and based on the LabPET II could remedy these problems. As a first step, a characterization of the detection module LabPET II was performed in PET and CT mode. The first CT imaging studies with this detector were also conducted with a simulator. This work allowed identifying an optical crosstalk phenomenon in the detection module. The search for a solution to this problem has motivated the evaluation of new types of metallized, more opaque, reflectors to limit crosstalk effects. The relatively low signal detected in CT led us to explore alternative scintillators having a higher light output. One of these scintillators will significantly improve the performance of the LabPET I scanner and could be used for the next generation of LabPET II scanners.
Identifer | oai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/6755 |
Date | January 2015 |
Creators | Bergeron, Mélanie |
Contributors | Lecomte, Roger, Fontaine, Réjean |
Publisher | Université de Sherbrooke |
Source Sets | Université de Sherbrooke |
Language | French |
Detected Language | French |
Type | Thèse |
Rights | © Mélanie Bergeron, Attribution - Pas d’Utilisation Commerciale - Pas de Modification 2.5 Canada, http://creativecommons.org/licenses/by-nc-nd/2.5/ca/ |
Page generated in 0.0022 seconds