E2F-1 has a central role in cell cycle orchestration, and its activity is tightly regulated. One of the ways E2F-1 activity is controlled is by direct modification by post translational modifications such as acetylation, ubiquitination and phosphorylation. Here it was demonstrated that E2F-1 is targeted by two novel modifications, namely methylation by Set7/9 and NEDDylation, both within the DNA binding and heterodimerisation domain of the protein. NEDDylation and methylation of E2F-1 both decrease the stability and diminish the transcriptional activity of E2F-1. Lysine residues in E2F-1 involved in NEDDylation are also targeted by methylation, allowing the potential for interplay between these modifications. Methylation of E2F-1 was demonstrated to be a prerequisite for its NEDDylation and the multi-domain protein UHRF1 implicated in mediating this effect. The results define a new level of control on E2F-1 and suggest a protein code with pleiotropic effects involved in E2F-1 regulation.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:588389 |
Date | January 2012 |
Creators | Loftus, Sarah Jane |
Contributors | La Thangue, N. B. |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:e0befc5a-76a3-4a35-b768-80a9dda6f307 |
Page generated in 0.0019 seconds