Return to search

Dynamics of driven colloidal systems in one-dimensional potential energy landscapes

The dynamics of colloidal particles driven over optical potential energy landscapes is studied. Experiments are conducted using colloids driven by solvent flow or piezo-stage, optical tweezers, magnetic fields, and video-microscopy. Firstly, the properties of optical traps and potential energy landscapes are determined using driven colloidal particles and clusters. The trap stiffness and potential depth of single Gaussian traps are measured directly. It is shown that the nature of optical potential energy landscapes may be fully engineered and predicted using a sum of single Gaussian potentials. Next, the motion of colloidal particles driven by a constant force over a periodic optical potential energy landscape is considered. The average particle velocity is found as a function of the driving velocity, and the wavelength of the optical potential energy landscape, which is found to be sinusoidal at small trap spacings. The critical driving velocity required for a particle to move across the landscape is determined as a function of the wavelength. Brownian motion is found to have a significant effect on the critical driving velocity, but a negligible effect at high driving velocity. Subsequently, the dynamic mode locking caused by adding a modulation to the driving force is studied. This synchronisation manifests as a `Devil's staircase' in the average particle velocity as a function of driving velocity. The amplitude and frequency dependence of the mode locked steps are studied. Furthermore, particle trajectories are examined, and phase portraits show locked (unlocked) states as closed (open) loops in phase space. A state diagram of mode locked steps is constructed. Finally, driven systems of magnetically interacting colloidal particles are examined in potential energy landscapes. The critical driving velocity of a chain of coupled particles driven by a constant force is found to depend strongly on the chain length and the magnetic field. Secondly, a mobile density wave (kink) in an optically pinned chain of coupled particles is exposed to a constant and modulated drive. The kink is found to behave as a quasi-particle, exhibiting analogous dynamic mode locking behaviour to the single particle case. Finally, the mode locking of a finite mobile chain is considered, and found to be affected by the chain flexibility, which is a function of the magnetic field.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:618534
Date January 2014
CreatorsJuniper, Michael P. N.
ContributorsDullens, Roel P. A.
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:4319222a-72bf-4390-a134-fc9fb8fd2515

Page generated in 0.0017 seconds