Return to search

The Influence of Groundwater Flowpaths, Nutrients, and Redox Conditions on the Extent of Microbial Methanogenesis in Coal Beds Using Solute and Isotope Chemistry: Powder River Basin, USA

Water and gas samples were collected from coalbed methane wells and surface coal mines in the Powder River Basin and analyzed for solute chemistry, isotopes, and gas composition to determine timing and source of recharge, nutrient influxes, extent of methanogenesis, and redox conditions. Delta18O-H2O values and hydraulic gradients show recharge to coal beds is principally from the southern basin margin with inputs from the western and eastern margins. Detectable 14C in coal waters indicates they were recharged <50,000 BP. Correlation of deltaD-CH4 and deltaD-H2O values suggests that methane has accumulated since the Late Pleistocene. Nutrient concentrations were low and did not correlate to groundwater recharge sources. Coal gases from the northwestern basin are isotopically-depleted suggesting 'early stage' methanogenesis, whereas coal gases from the central southeastern basin are isotopically-enriched suggesting 'late stage' methanogenesis. Several wells have elevated SO4 and oxygen, which may be due to recent hydrologic changes from groundwater pumping.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/193411
Date January 2010
CreatorsBates, Brittney Lynette
ContributorsMcIntosh, Jennifer C., McIntosh, Jennifer C., Lohse, Kathleen, Brooks, Paul D
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Thesis
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.1814 seconds