Return to search

Design fully-integrated dual-band two-stage class-E CMOS PA

In retrospect we can see that from the last century, wireless electronic technology has been in a rapid state of development. With the popularity of wireless communication, the power amplifier demand is rising. In general, magnitude, maximum noise figure, minimum noise figure, efficiency, and output power are important indicators of the amplifier. The IC industry is exploring how to reduce the additional cost and improve the high-frequency performance. Therefore, designing a strong adaptability and high cost performance of the PA has become a priority. As these technologies advance, the power amplifiers need to have better integration, lower cost, and lower power dissipation. Also, some special requirements are being asked in some areas, such as multi-mode and multi-band. In general, people have to use several power amplifiers parallel to frame a multifunction chip. Each of them working at different frequencies of interest has to have separate matching network, design, and area; also, the diversity amplifier prices will increase with the number of amplifiers, and its cost is also changed. In this thesis, because Class E power amplifier has lower power dissipation, 100% ideal efficiency, simple circuit structure, and strong applicability, the Class E is used as power amplifier in main stage. Moreover, in order to decrease input power and increase output power, the class A power amplifier is used as driver stage. It can use very small amount of power to provide a larger power. Moreover, we use a switched variable inductor and capacitor to constitute a dual band matching network which can let the PA work at more than one frequency. In fact, we design a Class A PA which is as a driver stage. Then, when we support 1 dBm input power, the driver stage can have 8 dBm output power. Also the output will be the input power for the main stage. When the Class E PA get 8dBm input power, it will export a 15dBm output power. Because the dual band matching network, the PA can work at 2.2 GHz and 2.6 GHz; also, the efficiency is 48% and 51%, and the both gains are 13 dB. In the future, in order to further improve the performance of the power amplifier and better multi-frequencies, more new designs with new structures should be investigated. Moreover, we need further research about design theory. In fact multi-frequencies power amplifier has a great potential in real application. It based on its special structure and design parameters.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc804916
Date08 1900
CreatorsZhao, Chao (Electrical engineering researcher)
ContributorsKim, Hyoung Soo, 1977-, Zhang, Hualiang, Wan, Yan, 1978-
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatx, 43 pages : illustrations (chiefly color), Text
RightsPublic, Zhao, Chao, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0024 seconds