Doctor of Philosophy / Department of Electrical and Computer Engineering / Caterina Scoglio / The science of complex networks has significantly advanced in the last decade and
has provided valuable insights into the properties of real world systems by evaluating their
structure and construction. Several phenomena occurring in real technological and social
systems can be studied, evaluated, quantified, and remedied with the help of network science.
The electric power grid is one such real technological system that can be studied through
the science of complex networks. The electric grid consists of three basic sub-systems:
Generation, Transmission, and Distribution. The transmission sub-system is of particular
interest in this work because its mesh-like structure offers challenging problems to complex
networks researchers. Cascading dynamics of power grids is one of the problems that can be
studied through complex networks. The North American Electric Reliability Corporation
(NERC) defines a cascading failure as the uncontrolled successive loss of system elements
triggered by an incident at any location.
In this dissertation, we primarily discuss the dynamics of cascading failures in the power
transmission grid, from a complex networks perspective, and propose possible solutions for
mitigating their effects. We evaluate the grid dynamics for two specific scenarios, load
growth and random
fluctuations in the grid, to study the behavior of the grid under critical
conditions. Further, we propose three mitigation strategies for reducing the damage caused
by cascading failures. The first strategy is intentional islanding in the power transmission
grid. The aim of this method is to intentionally split the grid into two or more separate self-
sustaining components such that the initial failure is isolated and the separated components
can function independently, with minimum load shedding. The second mitigation strategy
involves controlled placement of distributed generation (DG) in the transmission system in
order to enhance robustness of the grid. The third strategy requires the addition of a link in
the transmission grid by reduction of the average spectral distance, utilizing the Ybus matrix
of the grid and a novel algorithm.
Through this dissertation, we aim to successfully cover the gap present in the complex networks domain, with respect to the vulnerability analysis of power grid networks.
Identifer | oai:union.ndltd.org:KSU/oai:krex.k-state.edu:2097/16891 |
Date | January 1900 |
Creators | Pahwa, Sakshi |
Publisher | Kansas State University |
Source Sets | K-State Research Exchange |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0022 seconds