Return to search

Intelligent Speed Sensorless Maximum Power Point Tracking Control for Wind Generation Systems

The wind turbine generation system (WTGS) exhibits a nonlinear characteristic and its maximum power point varies with changing atmospheric conditions. In order to operate the WTGS at maximum power output under various wind speeds and to avoid using speed encoder in practical applications, it is necessary to improve the controller system to operate the maximum power points in the WTGS. There are three factors to influence wind generator, the wind speed, power coefficient and the radius of blade. The power coefficient depends on the blade pitch angle and tip speed ratio (TSR).
The objective of the dissertation is to develop an intelligent controlled wind energy conversion system (WECS) using AC/DC and DC/AC power converters for grid-connected power application. To achieve a fast and stable response for the real power control, an intelligent controller was proposed, which consists of a fuzzy neural network (FNN), a recurrent fuzzy neural network (RFNN), a wilcoxcon radial basis function network (WRBFN) and a improved Elman neural network (IENN) for MPPT. Furthermore, the parameter of the developed FNN, RFNN, WRBFN and IENN are trained on-line using back-propagation learning algorithm. However, the learning rates in the FNN, RFNN, WRBFN, and IENN are usually selected by trial and error method, which is time-consuming. Therefore, modified particle swarm optimization (MPSO) method is adopted to adjust the learning rates to improve the learning capability of the developed RFNN, WRBFN and IENN. Moreover, presents the estimation of the rotor speed is based on the sliding mode and model reference adaptive system (MRAS) speed observer theory. Furthermore, a sensorless vector-control strategy for an induction generator (IG) operating in a grid-connected variable speed wind energy conversion system can be achieved. On the other hand, a WRBFN based with hill-climb searching (HCS) maximum-power-point-tracking (MPPT) strategy is proposed for permanent magnet synchronous generator (PMSG) with a variable speed wind turbine. Finally, many simulation results are provided to show the effectiveness of the proposed intelligent control wind generation systems.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0829111-211835
Date29 August 2011
CreatorsHong, Chih-Ming
ContributorsHong-Tzer Yang, Shyh-Jier Huang, Gary W. Chang, Ching-Tsai Pan, Whei-Min Lin, Wen-Chen Chu, Ta-Peng Tsao
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0829111-211835
Rightsuser_define, Copyright information available at source archive

Page generated in 0.002 seconds