A system to improve efficiency performance of a DC-DC converter is simulated and built. The proposed system combines multiple DC-DC converters in parallel and implements a digital control scheme and load-share controller. A model of the system is developed in MATLAB Simulink and the model demonstrates the improved converter’s efficiency particularly at low load conditions. This simulation is then designed into a hardware system running three DC-DC converters in parallel, controlled by a microcontroller and a load-share controller. The hardware also confirms the simulation results, although some hardware refinements are evident as simulation results are superior. The system is designed to be scalable in the number of converters and the total output power, as well as being DC-DC converter topology-independent. Simulation results show the system maintaining better than 88 % efficiency over almost 90 % of the load range of the system. This system could be implemented where dynamic loads typically occur, such as in electric vehicle charging.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-1778 |
Date | 01 May 2012 |
Creators | Forbes, Daniel |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses and Project Reports |
Page generated in 0.0018 seconds