Fault detection and location algorithms have allowed for the power industry to alter the power grid from the traditional model to becoming a smart grid. This thesis implements an already established algorithm for detecting faults, as well as an impedance-based algorithm for detecting where on the line the fault has occurred and develops a smart algorithm for future HDL conversion using Simulink. Using the algorithms, the ways in which this implementation can be used to create a smarter grid are the fundamental basis for this research. Simulink was used to create a two-bus power system, create environment variables, and then Matlab was used to program the algorithm such that it could be FPGA-implementable, where the ways in which one can retrieve the data from a power line has been theorized. This novel approach to creating a smarter grid was theorized and created such that real-world applications may be further implemented in the future.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:ece_etds-1026 |
Date | 01 January 2013 |
Creators | Yeoman, Christina |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Electrical and Computer Engineering |
Page generated in 0.0018 seconds