The problem of monitoring an electric power system by placing as few measurement devices in the system as possible is closely related to the well-known vertex covering and dominating set problems in graphs. We consider the graph theoretical representation of this problem as a variation of the dominating set problem and define a set S to be a power dominating set of a graph if every vertex and every edge in the system is monitored by the set S (following a set of rules for power system monitoring). The minimum cardinality of a power dominating set of a graph G is the power domination number γP(G). We show that the power dominating set (PDS) problem is NP-complete even when restricted to bipartite graphs or chordal graphs. On the other hand, we give a linear algorithm to solve the PDS for trees. In addition, we investigate theoretical properties of γP(T) in trees T.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-20243 |
Date | 01 July 2002 |
Creators | Haynes, Teresa W., Hedetniemi, Sandra M., Hedetniemi, Stephen T., Henning, Michael A. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0022 seconds