Return to search

Fixed-frequency multi-mode multiple-output arbitrary-type DC-DC switching-mode power converters with variable-frequency control. / CUHK electronic theses & dissertations collection

Finally, a four-channel SIMO converter with direct combination but optimal switching sequence for arbitrary converter sequence and converter type is presented. The theoretical optimal 1st-order inductor waveform from this proposed control algorithm is introduced. FCL is involved in this design to realize the algorithm. Moreover, a current-modulated ramp signal, which couples to different controllers, is included to compensate the original deep correlated power stages. By using all of the proposed techniques, Measurement results show that both conduction loss and dynamic loss can be suppressed because of the optimized switching sequence. The load transient response time is around 100mus. The peak efficiency is 89% with a 2.5-V power supply. A maximum output power of 1.66W can be achieved. / Firstly, a pseudo-PWM hysteresis voltage-mode buck converter is proposed. It achieves fast transient speed by the hysteresis control, estimable switching spectrum with a locking frequency and fast mode switching between PWM and PFM depending on the loading change. Measurement results show that the recovery time under the load transient is around 5mus, which is 5 times of the switching period. The boundary of the recovery time is defined by the value of the off-chip inductor. / Switching-mode power converter (SMPC) is an important circuit block in electronic systems. In the modem SMPC system, constant frequency voltage or current-mode control technique is commonly used. However, some limitations are raised due to some preliminary settings in the design. In this thesis, the switching frequency or period is no longer a constant but a design variable. Then, an additional frequency-control loop (FCL) is introduced in order to obtain a fixed frequency operation in the steady state. Three individual designs implemented with different types of FCL are proposed to verify the concept. / Then, a four-channel SIMO converter based on FCL is developed, together with auto-phase allocation technique. This circuit not only solves the problem of imbalance loading of different channels, but it also keeps the idle period of the inductor sufficient short in the full operation region. By combining with all channel controllers, FCL makes fast load transient response without degrading the power efficiency. Moreover, linear auto converter-type adaption technique is also used, which makes the converter surviving from a wide input range and output range. Measurement results show that the proposed converter can achieve a peak efficiency of 89%, a total output power of 1.46W, a load transient response time of less than 70muS, and an idle inductor period of <10%. / Zheng, Yanqi. / Adviser: Leung Ka Nang. / Source: Dissertation Abstracts International, Volume: 73-03, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_344891
Date January 2010
ContributorsZheng, Yanqi., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, theses
Formatelectronic resource, microform, microfiche, 1 online resource (1 v. (various pagings) : ill.)
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0079 seconds