L'objectif de cette thèse est de concevoir, d'évaluer les performances énergétiques et d'étudier le comportement en régime transitoire pendant les opérations de chauffage et de démarrage d'un procédé réversible Power To Gas qui est une solution pour l'intégration des énergies renouvelables dans le mix énergétique. L'évaluation des performances énergétiques montre que 66,7% de l'énergie électrique entrante est stockée sous forme de substitut du gaz naturel et que les pertes concernent principalement les étapes de conversion en particulier la conversion AC/DC, la co-électrolyse et la méthanation. Le déstockage de l'électricité (Gas To Power) est réalisé en inversant le RSOC en mode SOFC alimenté par le gaz de synthèse (H2 et CO) produit dans un tri-reformeur. Ce procédé est autonome énergétiquement et produit de la chaleur inexploitée qui est à l'origine de sa faible efficacité de 40%. Une étude de la réponse en régime transitoire est conduite en développant des modèles dynamiques du co-électrolyseur réversible, des réacteurs et des échangeurs par le biais de deux logiciels: Matlab et Dymola. Les résultats permettent de préciser la pénalité énergétique et de revoir l'architecture du procédé prédéfinie en régime stationnaire. Plusieurs stratégies ont été étudiées afin d'optimiser le temps de démarrage et l'énergie consommée. Il s'est avéré que le RSOC est le composant qui consomme le plus d'énergie (71% de l'énergie totale) et qui nécessite le plus de temps de démarrage (60% du temps total) à cause de la quantité du gaz utilisée pour le chauffage et du temps important qu'il faut respecter afin d'assurer une augmentation en température progressive qui évite la détérioration des cellules. / The objective of this thesis is to design, evaluate the energetic performance and study the transient behavior during heating and startup operations of a reversible process Power To Gas process which is a solution for the integration of renewable electricity in the energy mix. Steady state models are first established in Aspen plus. Assessment of energetic performance shows that 66.7% of the electrical energy is stored as a Synthetic Natural Gas and the losses are caused mainly by the converting steps: the AC/DC, co-electrolysis and methanation conversions. Electricity production (Gas to Power) is performed by reversing the RSOC in SOFC mode fueled by synthesis gas (CO and H2) produced in a tri-reformer. This process is energetically autonomous and produces untapped heat which causes its 40% low efficiency. A study of the transient response during heat-up and start-up operations is conducted through the development of dynamic models of reversible co- electrolyzer, reactors and heat exchangers by using Matlab and Dymola softwares. The results allow to specify the energetic penalty and to review the architecture of predefined process in steady state. Several strategies have been studied to optimize the time and the energy consumption. It turned out that the RSOC is the slowest component (60% of total time) with the most energetic consumption (71% of total energy) because of the amount of gas used in heat-up operation and the significant time that must be respected in order to ensure an increase in temperature that prevents the cells deterioration.
Identifer | oai:union.ndltd.org:theses.fr/2015ENMP0044 |
Date | 20 October 2015 |
Creators | Er-Rbib, Hanaâ |
Contributors | Paris, ENMP, Bouallou, Chakib |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds