In the operation, planning and design of the transmission system it is of greatest concern to quantify the reliability security margin to unwanted conditions. The deterministic N-1 criterion has traditionally provided this security margin to reduce the consequences of severe conditions such as widespread blackouts. However, a deterministic criterion does not include the likelihood of different outage events. Moreover, experience from blackouts shows, e.g. in Sweden-Denmark September 2003, that the outages were not captured by the N-1 criterion. The question addressed in this thesis is how this system security margin can be quantified with probabilistic methods. A quantitative measure provides one valuable input to the decision-making process of selecting e.g. system expansions alternatives and maintenance actions in the planning and design phases. It is also beneficial for the operators in the control room to assess the associated security margin of existing and future network conditions. This thesis presents a method that assesses each component's risk to an insufficient transfer capability in the transmission system. This shows on each component's importance to the system security margin. It provides a systematic analysis and ranking of outage events' risk of overloading critical transfer sections (CTS) in the system. The severity of each critical event is quantified in a risk index based on the likelihood of the event and the consequence of the section's transmission capacity. This enables a comparison of the risk of a frequent outage event with small CTS consequences, with a rare event with large consequences. The developed approach has been applied for the generally known Roy Billinton Test System (RBTS). The result shows that the ranking of the components is highly dependent on the substation modelling and the studied system load level. With the restriction of only evaluating the risks to the transfer capability in a few CTSs, the method provides a quantitative ranking of the potential risks to the system security margin at different load levels. Consequently, the developed reliability based approach provides information which could improve the deterministic criterion for transmission system planning.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-10258 |
Date | January 2009 |
Creators | Setréus, Johan |
Publisher | KTH, Elektroteknisk teori och konstruktion, Stockholm : KTH |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Trita-EE, 1653-5146 ; 2009:015 |
Page generated in 0.0025 seconds