Power losses in the grid are important, and as the power losses decrease the efficiency increases. Not much research has been done recently on the Newton-Raphson Power Flow (NRPF) method in polar form for systems with High Voltage Direct Current (HVDC) subsystems. The point of departure for this thesis is based on decoupling the NR Power Flow method Power flow problems are solved for many fundamental problems in the operation and planning of the power system. Although many methods are available to solve these problems, this thesis focuses on developing an enhanced HVDC power flow method with improved computational efficiency and convergence stability.
A comparison of the results with full Newton-Raphson Power Flow method is presented to evaluate the performance of the proposed method. Simulations were conducted on the 14-bus and 30-bus IEEE systems. Two and three converters are shown to improve the voltage magnitude, active and reactive power profile .The overall results indicate which mode is the best mode compared to others depending on the bus importance.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:NSHD.ca#10222/50521 |
Date | 08 May 2014 |
Creators | Muhammed, Elssodani Abdelhadi |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0025 seconds