Return to search

Développement de composites polypropylène renforcés par des fibres de chanvre pour application automobile / Development of polypropylene composites reinforced with hemp fibers for automotive application

Face à la nécessité de trouver des alternatives aux ressources d’origine fossile et de limiter les impacts environnementaux de l’activité humaine, un important effort de recherche est actuellement en cours pour favoriser et accroître l’utilisation de produits issus de ressources renouvelables, comme les fibres végétales, dans la conception de pièces industrielles. Toutefois, de nombreux verrous scientifiques et technologiques restent encore à lever avant de pouvoir valoriser de façon fiable et durable ces fibres dans un contexte technique exigeant tel que celui du secteur l’automobile. Ainsi, l’amélioration de la qualité de l’interface fibres végétales / matrice polymère est un enjeu de taille car elle constitue une condition permettant de satisfaire les performances mécaniques requises telles que la rigidité, la résistance ou la tenue au choc. Dans ce contexte, l’objectif de la thèse a été le développement de fibres courtes de chanvre à propriétés de surface maitrisées et ciblées. Des solutions de fonctionnalisation de surface applicables par des procédés industrialisables ont été développées dans le but d’incorporer ces fibres dans une matrice polypropylène (PP). Les fibres de chanvre ont ainsi été traitées selon différentes stratégies de fonctionnalisation incluant l’utilisant du polypropylène greffé anhydride maléique (PP-g-MA), d’organosilanes, d’un acide aminé, d’isocyanates et d’un polyuréthane. Deux procédés de traitement à faible impact environnemental ont été comparés : le sprayage direct des fibres par les molécules de fonctionnalisation et l’incorporation de ces molécules par extrusion réactive. Les traitements en extrusion réactive se sont montrés plus efficaces que ceux réalisés par sprayage dans le cas du PP-g-MA. Trois voies de fonctionnalisation se sont avérées pertinentes au regard des propriétés mécaniques visées  : i) l’utilisation de PP-g-MA seul en extrusion réactive ; ii) la fonctionnalisation par sprayage d’un aminosilane ou d’un acide aminé couplée à l’incorporation du PP-g-MA en extrusion réactive. S’appuyant sur le développement de moyens expérimentaux et d’analyses spécifiques, l’étude du comportement au choc des biocomposites a montré que les composites renforcés fibres de chanvre permettent d’absorber d’avantage d’énergie que les composites PP / verre (à taux volumique de renfort identique) pour une longueur de fissuration similaire. Une modélisation par éléments finis du comportement au choc des composites étudiés est également proposée. / Due to the necessity to find alternatives to fossil resources and to reduce the environmental impacts of human activity, a major research effort is currently ongoing in order to develop and increase the use of biobased products from renewable resources, such as natural fibers, in the design of industrial parts. However, many scientific and technological hurdles have yet to be removed so as to promote these products before we can reliably and durably use these fibers in a demanding technical context as in automotive sector. Thus, improving the quality of the interface between natural fibers and polymer matrix is a major challenge, since it constitutes a condition for satisfying the required mechanical performances, such as stiffness, tensile or impact strengths. In this context, the thesis objective was to develop short hemp fibers with controlled and targeted surface properties. Surface-functionalization solutions have been developed, to be used by industrial processes, with the aim of incorporating these fibers in a polypropylene (PP) matrix. Therefore, hemp fibers have been treated according to various functionalization strategies including the use of grafted polypropylene maleic anhydride (PP-g-MA), organosilanes, an amino acid, isocyanates and a polyurethane. Two treatments processes, with low environmental impact, were compared: the direct spraying of functionalization molecules on fibers and reactive extrusion incorporation of these molecules. Reactive extrusion treatments were more efficient than those performed by spraying in the case of PP-g-MA. Three functionalization lanes have been found to be relevant regarding the mechanical properties targeted: i) using PP-g-MA alone in reactive extrusion; ii) spraying-functionalization of an aminosilane or of an amino acid coupled with the incorporation of PP-g-MA into the reactive extrusion. Based on the development of experimental means and specific analyzes, the study of the impact behavior of biocomposites has shown that hemp fiber reinforced composites allow to absorb more energy than PP / glass composites (at identical reinforcing volume rate) for a similar crack length. Also, a finite element modeling of the impact behavior of the studied composites is propounded.

Identiferoai:union.ndltd.org:theses.fr/2017MONTT144
Date29 November 2017
CreatorsPuech, Laurent
ContributorsMontpellier, Bergeret, Anne
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds