Retinoic acid receptor (RAR), a member of the steroid/thyroid hormone nuclear receptor superfamily, functions as a RA-dependent transcription activator bound to the RA response element (RARE) within the promoter or enhancer region of target genes. The transcriptional activity of RAR is modulated by a large number of coregulators including coactivators and corepressors. Acinus is a nuclear protein with three isoforms (Acinus-L, Acinus-S and Acinus-S'). Acinus-S' interacts with the A/B domain of RAR and represses RAR-regulated genes expression. Acinus (without isoform definition) has been identified as a component of nuclear speckles, the spliceosome and the exon junction complex (EJC), suggesting its localization in nuclear speckles and involvement in RNA processing. Acinus-S has been shown to localize in nuclear speckles. However, it is unclear whether the other two isoforms also localize in nuclear speckles. In addition, the role of Acinus in regulating pre-mRNA splicing is unclear. The goal of these studies was to examine the nuclear localization of Acinus-L and Acinus-S' and to determine the role of Acinus isoforms in RAR-dependent splicing. The sub-nuclear localization of Acinus-L and Acinus-S' was determined using fluorescence microscopy. Acinus-S' colocalizes with SC35 in nuclear speckles while Acinus-L localizes diffusely throughout the nucleoplasm. RA treatment has little effect on the sub-nuclear localization of Acinus-L and Acinus-S'. The domains/regions necessary for the distinct sub-nuclear localization of Acinus-L and Acinus-S' were identified. The speckled sub-nuclear localization of Acinus-S' is dependent on its C-terminal RS- and RD/E-rich region but is independent of the phosphorylation status of Ser-453 and Ser-604 within this region. The unique N-terminal SAP-motif of Acinus-L is responsible for its diffuse localization in the nucleus. Moreover, the sub-nuclear localization of Acinus isoforms is affected by each other, which is determined by the combinatorial effect of the more potent SAP motif of Acinus-L and the C-terminal RS- and RD/E-rich region in all Acinus isoforms. The C-terminal RS- and RD/E-rich region of Acinus mediates the colocalization of Acinus isoforms as well as with its interacting protein RNPS1. The role of Acinus isoforms in regulating pre-mRNA splicing was explored using in vivo splicing assays. Both Acinus-L and Acinus-S', with the activity of Acinus-L higher than that of Acinus-S', increase the splicing of a RA-responsive minigene containing a weak 5' splice site but not a RA-responsive minigene containing a strong 5' splice site. RA treatment further enhances the splicing activity of Acinus in a dose- and time-dependent manner, suggesting a RA-dependent activity in addition to a RA-independent activity of Acinus. The RA-independent effect of Acinus on the splicing of pre-mRNAs containing the weak 5' splice site occurs to varying degrees using minigene constructs containing several different promoters while the RA-dependent splicing activity of Acinus is specific for transcripts derived from the minigene driven by the RARE-containing promoter. This suggests that the ligand-dependent splicing activity of Acinus is related to the RA-activated RAR bound to the RARE. The ligand-dependent splicing activity of Acinus was further shown to be promoter-specific, depending on the ligand-dependent transcription activator. The RRM domain was identified to be necessary for the RA-dependent splicing activity of Acinus. The RA-independent splicing activity of Acinus is repressed by RNPS1. Unexpectedly, the C-terminal RS- and RD/E rich region is dispensable for the splicing activity of Acinus in regulating the minigene containing a weak 5' splice site. Importantly, measurement of the splicing of endogenous human RARĂ¢ and Bcl-x in vivo demonstrates that Acinus stimulates the use of the weaker alternative 5' splice site of these two genes in a RA-dependent manner for RARĂ¢ and in a RA-independent manner for Bcl-x. Taken together, these studies demonstrate the distinct sub-nuclear localization of Acinus-L and Acinus-S', and identified the domains that are responsible for their sub-nuclear localization, which shed light on possible distinct functions between Acinus isoforms. In addition, both Acinus-L and Acinus-S' have been shown to be splicing cofactors (with the activity of Acinus-L higher than that of Acinus-S') that facilitate constitutive splicing of pre-mRNAs containing a weak 5' splice site and regulate alternative splicing in favor of the isoform generated from the weaker alternative 5' splice site. Both Acinus-L and Acinus-S' have a RA-dependent splicing activity specific for RA-responsive genes, which suggests that Acinus functions in RAR-dependent splicing. / Biochemistry
Identifer | oai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/4010 |
Date | January 2014 |
Creators | Wang, Fang |
Contributors | Soprano, Dianne R., Chong, Parkson Lee-Gau, Shore, Scott K., Gamero, Ana, Soprano, Kenneth J. |
Publisher | Temple University. Libraries |
Source Sets | Temple University |
Language | English |
Detected Language | English |
Type | Thesis/Dissertation, Text |
Format | 207 pages |
Rights | IN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/ |
Relation | http://dx.doi.org/10.34944/dspace/3992, Theses and Dissertations |
Page generated in 0.0024 seconds