Return to search

Operational and Technological Peak Load Shifting Strategies for Residential Buildings

abstract: Residential air conditioning systems represent a critical load for many electric

utilities, especially for those who serve customers in hot climates. In hot and dry

climates, in particular, the cooling load is usually relatively low during night hours and

early mornings and hits its maximum in the late afternoon. If electric loads could be

shifted from peak hours (e.g., late afternoon) to off-peak hours (e.g., late morning), not

only would building operation costs decrease, the need to run peaker plants, which

typically use more fossil fuels than non-peaker plants, would also decrease. Thus, shifting

electricity consumption from peak to off-peak hours promotes economic and

environmental savings. Operational and technological strategies can reduce the load

during peak hours by shifting cooling operation from on-peak hours to off-peak hours.

Although operational peak load shifting strategies such as precooling may require

mechanical cooling (e.g., in climates like Phoenix, Arizona), this cooling is less

expensive than on-peak cooling due to demand charges or time-based price plans.

Precooling is an operational shift, rather than a technological one, and is thus widely

accessible to utilities’ customer base. This dissertation compares the effects of different

precooling strategies in a Phoenix-based utility’s residential customer market and

assesses the impact of technological enhancements (e.g., energy efficiency measures and

solar photovoltaic system) on the performance of precooling. This dissertation focuses on

the operational and technological peak load shifting strategies that are feasible for

residential buildings and discusses the advantages of each in terms of peak energy

savings and residential electricity cost savings. / Dissertation/Thesis / Doctoral Dissertation Civil Engineering 2016

Identiferoai:union.ndltd.org:asu.edu/item:38800
Date January 2016
ContributorsArababadi, Reza Arababadi (Author), Parrish, Kristen (Advisor), Reddy, T A (Committee member), Jackson, Roderick K (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format140 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.002 seconds